A102761
Same as A000179, except that a(0) = 2.
Original entry on oeis.org
2, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
-
{ A102761(n) = subst( serlaplace( 2*polchebyshev(n, 1, (x-2)/2)), x, 1); } \\ Max Alekseyev, Mar 06 2018
Changed a(0)=2 (making the sequence more consistent with existing formulae) by
Max Alekseyev, Mar 06 2018
A300484
a(n) = 2 * Integral_{t>=0} T_n(t/2+1) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
Original entry on oeis.org
2, 3, 8, 29, 130, 697, 4376, 31607, 258690, 2368847, 24011832, 267025409, 3233119106, 42346123861, 596617706344, 8998126507307, 144651872924162, 2469279716419035, 44609768252582312, 850345380011532261, 17056474009400181122
Offset: 0
-
{ A300484(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+2)/2)), x, 1); }
A300481
Rectangular array read by antidiagonals: a(m,n) = 2 * Integral_{t>=0} T_n((t-m)/2)*exp(-t)*dt, m>=0, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
Original entry on oeis.org
2, 2, 1, 2, 0, 0, 2, -1, -1, 3, 2, -2, 0, 2, 18, 2, -3, 3, 1, 7, 95, 2, -4, 8, -6, 2, 34, 592, 2, -5, 15, -25, 15, 13, 218, 4277, 2, -6, 24, -62, 82, -28, 80, 1574, 35010, 2, -7, 35, -123, 263, -269, 106, 579, 12879, 320589
Offset: 0
Array starts with:
m=0: 2, 1, 0, 3, 18, 95, 592, ...
m=1: 2, 0, -1, 2, 7, 34, 218, ...
m=2: 2, -1, 0, 1, 2, 13, 80, ...
m=3: 2, -2, 3, -6, 15, -28, 106, ...
m=4: 2, -3, 8, -25, 82, -269, 920, ...
...
Values for m<=0 are given in
A300480.
A300482
a(n) = 2 * Integral_{t>=0} T_n(t/2) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
Original entry on oeis.org
2, 1, 0, 3, 18, 95, 592, 4277, 35010, 320589, 3249648, 36137959, 437555090, 5730924667, 80743426272, 1217763999465, 19576502192898, 334180669811993, 6037275621582880, 115081732852805771, 2308342741080096402
Offset: 0
-
{ A300482(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, x/2)), x, 1); }
A300483
a(n) = 2 * Integral_{t>=0} T_n((t+1)/2) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
Original entry on oeis.org
2, 2, 3, 10, 47, 256, 1610, 11628, 95167, 871450, 8833459, 98233158, 1189398050, 15578268382, 219483388403, 3310225751098, 53214450175743, 908397242172212, 16411016615547530, 312824583201360248, 6274726126933368879, 132115002152296986730, 2913432246090160413827
Offset: 0
-
seq(2*int(orthopoly[T](n,(t+1)/2)*exp(-t),t=0..infinity),n=0..50); # Robert Israel, Mar 06 2018
-
a[n_] := 2 Integrate[ChebyshevT[n, (t + 1)/2] Exp[-t], {t, 0, Infinity}];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 28 2019 *)
-
{ A300483(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+1)/2)), x, 1); }
A300485
a(n) = 2 * Integral_{t>=0} T_n((t-1)/2) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.
Original entry on oeis.org
2, 0, -1, 2, 7, 34, 218, 1574, 12879, 117938, 1195479, 13294412, 160967522, 2108289364, 29703846535, 447990339602, 7201792686815, 122938198060734, 2220989581865882, 42336203570931402, 849191837620701239, 17879821236086808098
Offset: 0
-
{ A300485(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x-1)/2)), x, 1); }
Showing 1-6 of 6 results.
Comments