cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A011545 a(n) is the integer whose decimal digits are the first n+1 decimal digits of Pi.

Original entry on oeis.org

3, 31, 314, 3141, 31415, 314159, 3141592, 31415926, 314159265, 3141592653, 31415926535, 314159265358, 3141592653589, 31415926535897, 314159265358979, 3141592653589793, 31415926535897932, 314159265358979323, 3141592653589793238, 31415926535897932384
Offset: 0

Views

Author

Keywords

Comments

Number of collisions occurring in a system consisting of an infinitely massive, rigid wall at the origin, a ball with mass m stationary at position x1 > 0, and a ball with mass (10^2n)m at position x2 > x1 and rolling toward the origin, assuming perfectly elastic collisions and no friction. - Richard Holmes, Jun 17 2021
Wolfgang Haken (1977) conjectured that no term of this sequence is a perfect square, and estimated the probability that this conjecture is false to be smaller than 10^-9. - Paolo Xausa, Jul 15 2023

References

  • Martin Gardner, Fractal Music, Hypercards and More: Mathematical Recreations from Scientific American Magazine, W. H. Freemand and Company, New York, NY, 1992, pp. 274-275.

Crossrefs

Programs

  • Mathematica
    s=RealDigits[Pi, 10, 30][[1]]; Table[FromDigits[Take[s, n]], {n, Length[s]}]
    (* Or: *)
    a[n_] := IntegerPart[Pi*10^n]; Table[a[n], {n, 0, 9}] (* Peter Luschny, Mar 15 2024 *)
  • PARI
    A011545(n)={localprec(n+3); Pi\10^-n} \\ M. F. Hasler, Mar 15 2024

Formula

a(n) = floor(Pi*10^n).

Extensions

Definition corrected by M. F. Hasler, Mar 15 2024

A089285 Sum of divisors of floor(Pi*10^n), Pi=3.14...

Original entry on oeis.org

4, 32, 474, 4550, 38688, 314160, 5890500, 47154384, 627314688, 4227938208, 44474529792, 471238898040, 3384209127992, 31609375538016, 321468276096000, 3397292023738536, 63981878014882800, 314159266666564480, 6855058424082419712, 61964634989789392896
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2003

Keywords

Examples

			n=4: floor(Pi*10^4) = 31415 with divisors: {1, 5, 61, 103, 305, 515, 6283, 31415}: a(4) = 1 + 5 + 61 + 103 + 305 + 515 + 6283 + 31415 = 38688.
		

Crossrefs

Formula

a(n) = A000203(A011545(n)).

Extensions

a(18)-a(19) from Tyler Busby, Mar 14 2025
Showing 1-2 of 2 results.