A089352 Numbers that are divisible by the sum of their distinct prime factors (A008472).
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 70, 71, 73, 79, 81, 83, 84, 89, 90, 97, 101, 103, 105, 107, 109, 113, 120, 121, 125, 127, 128, 131, 137, 139, 140, 149, 150, 151, 157, 163, 167, 168, 169, 173
Offset: 1
Examples
84=2*2*3*7 is divisible by 2+3+7.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jean-Marie de Koninck, Florian Luca, Integers divisible by the sum of their prime factors, Mathematika 52:1-2 (2005), pp. 69-77.
Programs
-
Mathematica
primeDivisors[n_] := Select[Divisors[n], PrimeQ]; primeSumDivQ[n_] := 0 == Mod[n, Apply[Plus, primeDivisors[n]]]; Select[Range[2, 300], primeSumDivQ] Select[Range[2, 175], Divisible[#, Plus @@ First /@ FactorInteger[#]] &] (* Jayanta Basu, Aug 13 2013 *)
-
PARI
is(n)=my(f=factor(n)[,1]);n%sum(i=1,#f,f[i])==0 \\ Charles R Greathouse IV, Feb 01 2013
Extensions
Name edited by Michel Marcus, Jul 15 2020
Comments