cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089359 Primes which can be partitioned into distinct factorials. 0! and 1! are not considered distinct.

Original entry on oeis.org

2, 3, 7, 31, 127, 151, 727, 751, 5167, 5791, 5881, 40351, 40471, 41047, 41161, 45361, 45481, 362911, 363751, 368047, 368647, 368791, 403327, 403951, 408241, 408271, 408361, 409081, 3628927, 3629671, 3633991, 3634591, 3669241, 3669847, 3669961
Offset: 1

Views

Author

Amarnath Murthy, Nov 07 2003

Keywords

Examples

			From _Seiichi Manyama_, Mar 24 2018: (Start)
n | a(n) |
--+------+------------------
1 |    2 | 2!
2 |    3 | 2! + 1!
3 |    7 | 3! + 1!
4 |   31 | 4! + 3! + 1!
5 |  127 | 5! + 3! + 1!
6 |  151 | 5! + 4! + 3! + 1! (End)
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    def facbase(k, f):
        return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
    def auptoN(N): # terms up to N factorial-base digits; 20 generates b-file
        f = [factorial(i) for i in range(1, N+1)]
        return list(filter(isprime, (facbase(k, f) for k in range(2**N))))
    print(auptoN(10)) # Michael S. Branicky, Oct 15 2022

Extensions

More terms from Vladeta Jovovic, Nov 08 2003