cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089401 a(n) = m - A089398(2^m + n) for m>=n.

Original entry on oeis.org

1, 1, 3, 2, 4, 5, 6, 5, 7, 8, 11, 9, 11, 12, 13, 12, 14, 15, 18, 18, 19, 20, 21, 20, 22, 23, 26, 24, 26, 27, 28, 27, 29, 30, 33, 33, 36, 36, 37, 36, 38, 39, 42, 40, 42, 43, 44, 43, 45, 46, 49, 49, 50, 51, 52, 51, 53, 54, 57, 55, 57, 58, 59, 58, 60, 61, 64, 64, 67, 69, 69, 68, 70
Offset: 1

Views

Author

Paul D. Hanna, Oct 30 2003

Keywords

Comments

A089398(n) = n-th column sum of binary digits of k*2^(k-1), where summation is over all k>=1, without carrying from columns sums that may exceed 2.
Row sums of triangular arrays in A103582 and in A103583. - Philippe Deléham, Apr 04 2005

Examples

			a(6)=5 since 7 - A089398(2^7 + 6) = 7 - 2 = 5.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{lg = Floor[Log[2, n]] + 1}, Sum[ Join[ Reverse[ IntegerDigits[n - i + 1, 2]], {0}][[i]], {i, lg}]]; Table[n - f[2^n + n] + 2, {n, 0, 72}] (* Robert G. Wilson v, Mar 29 2005 *)
  • PARI
    a(n)=n/2+1/2*sum(k=1,n,(-1)^floor((n-k)/2^(k-1))) \\ Benoit Cloitre
    
  • PARI
    {a(n)=if(n<=0,0,m=floor(log(n)/log(2)); if(n-2^m<=m,n-m+a(n-2^m),2^m-1+a(n-2^m)))} \\ Paul D. Hanna, Mar 28 2005

Formula

a(n) = n/2+1/2*sum(k=1, n, (-1)^floor((n-k)/2^(k-1))). - Benoit Cloitre, Mar 28 2005
Let a(0)=0; when n - 2^[log_2(n)] <= [log_2(n)] then a(n) = a(n - 2^[log_2(n)]) + n - [log_2(n)], else a(n) = a(n - 2^[log_2(n)]) + 2^[log_2(n)] - 1. Thus a(2^m) = 2^m - m for all m>=0; for 0<=k<=m: a(2^m + k) = a(k) + 2^m + k - m; for mPaul D. Hanna, Mar 28 2005

Extensions

More terms from Benoit Cloitre and Robert G. Wilson v, Mar 28 2005