A089447 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies: f(x,y) = g(x,y) + xy*f(x,y)^4 and where g(x,y) satisfies: 1 + (x+y-1)*g(x,y) + xy*g(x,y)^2 = 0.
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 48, 20, 1, 1, 35, 162, 162, 35, 1, 1, 56, 441, 841, 441, 56, 1, 1, 84, 1036, 3314, 3314, 1036, 84, 1, 1, 120, 2184, 10786, 18004, 10786, 2184, 120, 1, 1, 165, 4236, 30460, 77952, 77952, 30460, 4236, 165, 1, 1, 220, 7689, 77044
Offset: 0
Examples
Rows begin: [1, 1, 1, 1, 1, 1, 1, 1, ...]; [1, 4, 10, 20, 35, 56, 84, 120, ...]; [1, 10, 48, 162, 441, 1036, 2184, 4236, ...]; [1, 20, 162, 841, 3314, 10786, 30460, 77044, ...]; [1, 35, 441, 3314, 18004, 77952, 284880, 912042, ...]; [1, 56, 1036, 10786, 77952, 435654, 2007456, 7951674, ...]; [1, 84, 2184, 30460, 284880, 2007456, 11427992, 55009548, ...]; [1, 120, 4236, 77044, 912042, 7951674, 55009548, 317112363, ...]; [1, 165, 7689, 178387, 2624453, 27870393, 231114465, 1576219474, ...]; ...
Programs
-
PARI
{L=10; T=matrix(L,L,n,k,1); for(n=1,L-1, for(k=1,L-1, T[n+1,k+1]=binomial(n+k,k)*binomial(n+k+2,k+1)/(n+k+2)+ sum(j3=1,k,sum(i3=1,n,T[n-i3+1,k-j3+1]* sum(j2=1,j3,sum(i2=1,i3,T[i3-i2+1,j3-j2+1]* sum(j1=1,j2,sum(i1=1,i2,T[i2-i1+1,j2-j1+1]*T[i1,j1])); )); )); )); T}
Comments