cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089462 2nd hyperbinomial transform of A001858.

Original entry on oeis.org

1, 3, 14, 93, 822, 9193, 125292, 2022555, 37829468, 805712859, 19270873704, 511742870653, 14946235170120, 476314240239633, 16451368229689808, 612254102183085627, 24428043107239133712, 1040281158638494489075
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2003

Keywords

Comments

A001858 enumerates forests of labeled trees with n nodes and shifts 1 place left under the hyperbinomial transform.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Binomial[m, j]*Binomial[n, n - m - j + 1]*(n + 2)^(n - m - j + 1)*(m + j)!/(-2)^j, {j, 0, m}]/m!, {m, 0, n + 1}], {n, 0, 50}] (* G. C. Greubel, Nov 18 2017 *)
  • PARI
    a(n)=if(n<0,0,sum(m=0,n+1,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j+1)*(n+2)^(n-m-j+1)*(m+j)!/(-2)^j)/m!))

Formula

a(n) = Sum_{k=0..n} 2*(n-k+2)^(n-k-1)*C(n, k)*A001858(k).
a(n) = Sum_{m=0..(n+1)} ( Sum_{j=0..m} C(m, j)*C(n, n-m-j+1)*(n+2)^(n-m-j+1)*(m+j)!/(-2)^j)/m!.
a(n) ~ 2 * exp(5/2) * n^(n-1). - Vaclav Kotesovec, Oct 11 2020