A089497 mu(prime(n)+1) - mu(prime(n)-1), where mu is the Moebius function.
1, 1, -1, -1, 1, 0, 0, -1, -1, 1, 1, -1, 1, -1, 0, -1, 1, 1, 1, 1, 1, -1, 0, 0, -1, 1, -1, -1, -1, 0, 1, -1, 1, 0, 0, 1, 0, -1, -1, -1, -1, 1, 1, 0, 0, -1, 1, -1, -1, 0, 1, 0, 0, -1, -1, 0, 0, 1, -1, 1, 0, 0, 1, 1, -1, -1, 0, -1, 0, -1, -1, 1, -1, 0, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 0, 1, 1, -1, -1, -1, 0, 0, 1, -1, 1, 0, 0, 1, -1, 0, -1, 1, -1, 0, -1, 0
Offset: 2
Keywords
Links
- Eric Weisstein's World of Mathematics, Moebius Function
- Eric Weisstein's World of Mathematics, Legendre Symbol
Crossrefs
Programs
-
Mathematica
Table[MoebiusMu[Prime[n]+1] - MoebiusMu[Prime[n]-1], {n, 2, 150}] MoebiusMu[#+1]-MoebiusMu[#-1]&/@Prime[Range[2,110]] (* Harvey P. Dale, Sep 16 2018 *)
Formula
Let p = prime(n), then a(n) = (-1/p) mu(p+(-1/p)), where (-1/p) is the Legendre symbol, A070750. (Pieter Moree)
Comments