A089579 Total number of perfect powers > 1 below 10^n.
3, 11, 39, 123, 365, 1109, 3393, 10489, 32668, 102229, 320988, 1010194, 3184136, 10046919, 31723590, 100216743, 316694003, 1001003330, 3164437423, 10004650116, 31632790242, 100021566155, 316274216760, 1000100055682, 3162493192563, 10000464300849, 31623776828239, 100002154796112
Offset: 1
Keywords
Examples
For n=2, the 11 perfect powers > 1 below 10^2 = 100 are: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81. - _Michael B. Porter_, Jul 18 2016
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
Table[lim=10^n-1; Sum[ -(Floor[lim^(1/k)]-1)*MoebiusMu[k], {k,2,Floor[Log[2,lim]]}], {n,30}] (* T. D. Noe, Nov 16 2006 *)
-
Python
from sympy import mobius, integer_nthroot def A089579(n): return int(sum(mobius(x)*(1-integer_nthroot(10**n,x)[0]) for x in range(2,(10**n).bit_length())))-1 if n>1 else 3 # Chai Wah Wu, Aug 13 2024
-
SageMath
def A089579(n): gen = (p for p in srange(2, 10^n) if p.is_perfect_power()) return sum(1 for _ in gen) print([A089579(n) for n in range(1, 7)]) # Peter Luschny, Sep 15 2023
Formula
a(n) = A070428(n) - 2 for n >= 2.
Extensions
a(9)-a(10) from Martin Renner, Oct 02 2004
More terms from T. D. Noe, Nov 16 2006
More precise name by Hugo Pfoertner, Sep 15 2023
Comments