cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089579 Total number of perfect powers > 1 below 10^n.

Original entry on oeis.org

3, 11, 39, 123, 365, 1109, 3393, 10489, 32668, 102229, 320988, 1010194, 3184136, 10046919, 31723590, 100216743, 316694003, 1001003330, 3164437423, 10004650116, 31632790242, 100021566155, 316274216760, 1000100055682, 3162493192563, 10000464300849, 31623776828239, 100002154796112
Offset: 1

Views

Author

Martin Renner, Dec 29 2003

Keywords

Comments

k is a perfect power <=> there exist integers a and b, b > 1, and k = a^b.
From Robert G. Wilson v, Jul 17 2016: (Start)
Limit_{n->oo} a(n)/sqrt(10^n) = 1.
A089580(n) - a(n) = A275358(n).
The four terms which make up the difference between A089580(2) - a(2) are: 16 = 2^4 = 4^2, 64 = 2^6 = 4^3 = 8^2 and 81 = 3^4 = 9^2; one for 16, two for 64 and one for 81 making a total of 4. See A117453.
(End)

Examples

			For n=2, the 11 perfect powers > 1 below 10^2 = 100 are: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81. - _Michael B. Porter_, Jul 18 2016
		

Crossrefs

Programs

  • Mathematica
    Table[lim=10^n-1; Sum[ -(Floor[lim^(1/k)]-1)*MoebiusMu[k], {k,2,Floor[Log[2,lim]]}], {n,30}] (* T. D. Noe, Nov 16 2006 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A089579(n): return int(sum(mobius(x)*(1-integer_nthroot(10**n,x)[0]) for x in range(2,(10**n).bit_length())))-1 if n>1 else 3 # Chai Wah Wu, Aug 13 2024
  • SageMath
    def A089579(n):
        gen = (p for p in srange(2, 10^n) if p.is_perfect_power())
        return sum(1 for _ in gen)
    print([A089579(n) for n in range(1, 7)])  # Peter Luschny, Sep 15 2023
    

Formula

a(n) = A070428(n) - 2 for n >= 2.

Extensions

a(9)-a(10) from Martin Renner, Oct 02 2004
More terms from T. D. Noe, Nov 16 2006
More precise name by Hugo Pfoertner, Sep 15 2023