cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089798 Expansion of Jacobi theta function theta_4(q^2).

Original entry on oeis.org

1, 0, -2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Crossrefs

Cf. A002448.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[ EllipticTheta[4, 0, q^2], {q, 0, n}]; Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Nov 12 2012 *)
  • PARI
    for(n=0,50, print1(if(n==0, 1, 2*(floor(sqrt(n/2)) - floor(sqrt((n-1)/2)))*(-1)^floor(sqrt(n/2))), ", ")) \\ G. C. Greubel, Nov 20 2017

Formula

For n > 0, a(n) = 2*(floor(sqrt(n/2)) - floor(sqrt((n-1)/2)))*(-1)^floor(sqrt(n/2)). - Mikael Aaltonen, Jan 18 2015