A089808 a(n) = floor(1/((n*r) mod 1)), where r = phi^(-2) = (3 - sqrt(5))/2.
2, 1, 6, 1, 1, 3, 1, 17, 2, 1, 4, 1, 1, 2, 1, 8, 2, 1, 3, 1, 46, 2, 1, 5, 1, 1, 3, 1, 12, 2, 1, 4, 1, 1, 2, 1, 7, 1, 1, 3, 1, 23, 2, 1, 5, 1, 1, 2, 1, 10, 2, 1, 4, 1, 122, 2, 1, 6, 1, 1, 3, 1, 15, 2, 1, 4, 1, 1, 2, 1, 8, 1, 1, 3, 1, 33, 2, 1, 5, 1, 1, 3, 1, 11, 2, 1, 4, 1, 1, 2, 1, 7, 1, 1, 3, 1, 19, 2, 1, 5, 1
Offset: 1
Examples
a(6) = 3. Take 6*r = 2.29179...( mod 1) = 0.29179...; invert = 3.42705... and delete the fractional part, getting 3.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
r := (3 - Sqrt[5])/2; Table[Floor[1/(Mod[(n*r), 1])], {n, 1, 50}] (* G. C. Greubel, Nov 20 2017 *)
Extensions
More terms from Sam Alexander, Nov 16 2003
Comments