A089810 Expansion of Jacobi theta function theta_3(Pi/6, q) in powers of q.
1, 1, 0, 0, -1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0
Offset: 0
Examples
G.f. = 1 + q - q^4 - 2*q^9 - q^16 + q^25 + 2*q^36 + q^49 - q^64 - 2*q^81 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions.
- Eric Weisstein's World of Mathematics, Quintuple Product Identity.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
- I. J. Zucker, Further Relations Amongst Infinite Series and Products. II. The Evaluation of Three-Dimensional Lattice Sums, J. Phys. A: Math. Gen. 23, 117-132, 1990.
Crossrefs
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/6, q], {q, 0, n}]; (* Michael Somos, Nov 14 2011 *) a[ n_] := SeriesCoefficient[ (3 EllipticTheta[ 4, 0, q^9] - EllipticTheta[ 4, 0, q]) /2, {q, 0, n}]; (* Michael Somos, Nov 14 2011 *) QP = QPochhammer; s = QP[q^2]^2*(QP[q^3] / (QP[q]*QP[q^6])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015, adapted from PARI *)
-
PARI
{a(n) = my(x); if( n<1, n==0, issquare(n, &x) * (1 + (n%3==0)) * (-1)^((1 + x) \ 3))}; /* Michael Somos, Nov 05 2005 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jan 26 2008 */
Formula
Expansion of Jacobi theta function (3theta_4(q^9) - theta_4(q)) / 2 in powers of q.
a(n) is multiplicative with a(0)=1, a(2^e) = -(1 + (-1)^e)/2, if e>0, a(3^e) = -2(1 + (-1)^e)/2 if e>0, a(p^e) = (1 + (-1)^e)/2 otherwise.
From Michael Somos, Nov 05 2005: (Start)
Euler transform of period 6 sequence [ 1, -1, 0, -1, 1, -1, ...].
G.f.: (Sum_{k in Z} 3 * (-x)^((3*k)^2) - (-x)^(k^2)) / 2 = Product_{k>0} (1 - x^(2*k)) / ((1 - x^(6*k - 1)) * (1 - x^(6*k-5))).
Expansion of eta(q^2)^2 * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. (End)
Expansion of psi(q) * chi(-q^3) in powers of q where psi(), chi() are Ramanujan theta functions. - Michael Somos, Sep 16 2007
Expansion of (3 * phi(-q^9) - phi(-q)) / 2 in powers of q where phi() is a Ramanujan theta function.
From Michael Somos, Sep 17 2007: (Start)
Expansion of Jacobi theta function theta_3(Pi/6, q) in powers of q.
Expansion of f(x*w, x/w) in powers of x where w is a primitive sixth root of unity and f() is Ramanujan's two-variable theta function. (End)
From Michael Somos, Jan 26 2008: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 72^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A080995.
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^k + x^(2*k)). (End)
a(3*n + 2) = a(4*n + 2) = a(4*n + 3) = a(5*n + 2) = a(5*n + 3) = a(8*n + 5) = a(9*n + 3) = a(9*n + 6) = 0. a(3*n + 1) = A089802(n). a(4*n) = A089807(n). a(9*n) = A002448(n).
a(n) = (floor(sqrt(n))-floor(sqrt(n-1)))*(abs(2-4*sin((floor(sqrt(n))+1)*Pi/3)^2) - 4*sin((floor(sqrt(n))+2)*Pi/3)^2)*(-1)^floor(floor(sqrt(n)-1)/3). - Mikael Aaltonen, Jan 17 2015
From Michael Somos, May 25 2015: (Start)
Sum_{k=1..n} abs(a(k)) ~ (4/3)*sqrt(n). - Amiram Eldar, Jan 27 2024
Comments