cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089849 Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A069772.

Original entry on oeis.org

1, 1, 2, 1, 6, 2, 20, 5, 70, 14, 252, 42, 924, 132, 3432, 429, 12870, 1430, 48620, 4862, 184756, 16796, 705432, 58786, 2704156, 208012, 10400600, 742900, 40116600, 2674440, 155117520, 9694845, 601080390, 35357670, 2333606220, 129644790
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

The number of n-node binary trees fixed by the corresponding automorphism(s). A000984 interleaved with A000108.

Crossrefs

Cf. A000984 interleaved with A000108.

Programs

  • Magma
    A089849:= func< n | n eq 0 select 1 else ((1+(-1)^n)*Binomial(n,Floor(n/2))+(1-(-1)^n)*Catalan(Floor((n-1)/2)))/2 >;
    [A089849(n): n in [0..50]]; // G. C. Greubel, Feb 22 2025
    
  • Mathematica
    a[n_] := If[EvenQ[n], Binomial[n, n/2], CatalanNumber[(n-1)/2]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 09 2023 *)
  • SageMath
    def A089849(n): return binomial(n, n//2) if n%2==0 else catalan_number((n-1)//2)
    print([A089849(n) for n in range(51)]) # G. C. Greubel, Feb 22 2025
  • Scheme
    (define (A089849 n) (if (even? n) (A000984 (/ n 2)) (A000108 (/ (- n 1) 2))))
    

Formula

a(2n) = A000984(n), a(2n+1) = A000108(n).
a(n) = Sum_{k=0..floor(n/2)} binomial(k+1,n-k)*Catalan(k). - Paul Barry, Feb 23 2005
From Paul Barry, Jan 23 2006: (Start)
a(n+1) = Jacobi_P(n, 2, 0, 0)*2^n*(cos(Pi*n/2)+sin(Pi*n/2)).
a(n+1) = (Sum_{k=0..n} C(n,k)*C(n+2,k)*(-1)^k)*(cos(Pi*n/2)+sin(Pi*n/2)). (End)
From Sergei N. Gladkovskii, Dec 18 2012 (Start)
E.g.f.: 1 + integral(G(0)) dx where G(k) = 1 + 2*x/(1 - 2*x/(2*x + (2*k+2)*(2*k+4)/G(k+1) )); (continued fraction).
E.g.f.: 1 + x*G(0) where G(k) = 1 + x*(2*k+1)/(k+1 - x*(k+1)/(x + (k+2)*(2*k+3)/G(k+1) )); (continued fraction).
E.g.f.: E(x) = integral( (1/x + 2)*BesselI(1,2*x) ) dx. (End)
G.f.: G(0), where G(k) = 1 + x/(k+1 - (k+1)*(4*k+2)*x/((4*k+2)*x + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 19 2013
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=0} 1/a(n) = 10/3 + 2*Pi/(3*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 2/3 + 2*Pi/(9*sqrt(3)). (End)