A089849 Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A069772.
1, 1, 2, 1, 6, 2, 20, 5, 70, 14, 252, 42, 924, 132, 3432, 429, 12870, 1430, 48620, 4862, 184756, 16796, 705432, 58786, 2704156, 208012, 10400600, 742900, 40116600, 2674440, 155117520, 9694845, 601080390, 35357670, 2333606220, 129644790
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Antti Karttunen, C-program for computing the initial terms of this sequence.
Programs
-
Magma
A089849:= func< n | n eq 0 select 1 else ((1+(-1)^n)*Binomial(n,Floor(n/2))+(1-(-1)^n)*Catalan(Floor((n-1)/2)))/2 >; [A089849(n): n in [0..50]]; // G. C. Greubel, Feb 22 2025
-
Mathematica
a[n_] := If[EvenQ[n], Binomial[n, n/2], CatalanNumber[(n-1)/2]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 09 2023 *)
-
SageMath
def A089849(n): return binomial(n, n//2) if n%2==0 else catalan_number((n-1)//2) print([A089849(n) for n in range(51)]) # G. C. Greubel, Feb 22 2025
-
Scheme
(define (A089849 n) (if (even? n) (A000984 (/ n 2)) (A000108 (/ (- n 1) 2))))
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(k+1,n-k)*Catalan(k). - Paul Barry, Feb 23 2005
From Paul Barry, Jan 23 2006: (Start)
a(n+1) = Jacobi_P(n, 2, 0, 0)*2^n*(cos(Pi*n/2)+sin(Pi*n/2)).
a(n+1) = (Sum_{k=0..n} C(n,k)*C(n+2,k)*(-1)^k)*(cos(Pi*n/2)+sin(Pi*n/2)). (End)
From Sergei N. Gladkovskii, Dec 18 2012 (Start)
E.g.f.: 1 + integral(G(0)) dx where G(k) = 1 + 2*x/(1 - 2*x/(2*x + (2*k+2)*(2*k+4)/G(k+1) )); (continued fraction).
E.g.f.: 1 + x*G(0) where G(k) = 1 + x*(2*k+1)/(k+1 - x*(k+1)/(x + (k+2)*(2*k+3)/G(k+1) )); (continued fraction).
E.g.f.: E(x) = integral( (1/x + 2)*BesselI(1,2*x) ) dx. (End)
G.f.: G(0), where G(k) = 1 + x/(k+1 - (k+1)*(4*k+2)*x/((4*k+2)*x + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 19 2013
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=0} 1/a(n) = 10/3 + 2*Pi/(3*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 2/3 + 2*Pi/(9*sqrt(3)). (End)
Comments