cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089902 Antidiagonal sums of array A089900.

Original entry on oeis.org

1, 3, 10, 40, 193, 1107, 7412, 56960, 495055, 4805327, 51540462, 605360184, 7726837413, 106484488843, 1575591323104, 24910186990320, 419042540060243, 7472730215908551, 140804433625595626, 2795108750920323336
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2003

Keywords

Comments

The n-th row of array A089900 is the n-th binomial transform of the factorials found in row 0: {1!,2!,3!,..,(n+1)!,..}. The hyperbinomial transform of the main diagonal gives: {1,4,27,..,(n+1)^(n+1),..}, which is the next lower diagonal in array A089900.

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,sum(k=0,n,sum(i=0,k,(n-k)^(k-i)*binomial(k,i)*(i+1)!)))
    
  • PARI
    a(n)=sum(k=0,n,sum(i=0,k,(n-k)^(k-i)*binomial(k,i)*(i+1)!));
    
  • PARI
    a(n)=polcoeff(sum(m=0,2*n,sum(k=1,2*n,k!*x^(m+k-1)/(1-m*x)^k),x*O(x^n)),n);

Formula

a(n) = sum_{k=0..n} sum_{i=0..k} (n-k)^(k-i)*binomial(k, i)*(i+1)!
O.g.f.: Sum_{m>=0, n>=1} n!*x^(m+n-1)/(1-m*x)^n - Vladeta Jovovic, Nov 18 2003