A089910 Indices n at which blocks (1;1) occur in infinite Fibonacci word, i.e., such that A005614(n-1) = A005614(n-2) = 1.
4, 9, 12, 17, 22, 25, 30, 33, 38, 43, 46, 51, 56, 59, 64, 67, 72, 77, 80, 85, 88, 93, 98, 101, 106, 111, 114, 119, 122, 127, 132, 135, 140, 145, 148, 153, 156, 161, 166, 169, 174, 177, 182, 187, 190, 195, 200, 203, 208, 211, 216, 221, 224, 229, 232, 237, 242, 245
Offset: 1
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014.
- Urban Larsson and Nathan Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
Programs
-
Maple
phi:=(1+sqrt(5))/2: seq(floor(phi*floor(n*phi^2))+1, n=1..80); # Michel Dekking, Sep 15 2016
-
Mathematica
r = GoldenRatio; u = Flatten[Table[Select[Range[Floor[(r^2 + r) n], Floor[(r^2 + r) n + 1]], Floor[#/r] == Floor[n*r^2] &], {n, 1, 100}]] (* Clark Kimberling, May 03 2015 *)
-
Python
from math import isqrt def A089910(n): return (n+isqrt(5*n**2)&-2)+n+1 # Chai Wah Wu, Aug 29 2022
Formula
a(n) = floor((2+sqrt(5))*n) + 0 or 1;
floor(n*(2+sqrt(5))) + b(a(n)) - a(n) = 0 where b(x) = A078588(x) = x + 1 + ceiling(x*sqrt(5)) - 2*ceiling(x*(1+sqrt(5))/2).
For n >= 2, a(n) = a(n-1) + d, where d = 5 if n-1 is in A000201, else d = 3. - Clark Kimberling, May 03 2015
a(n) = A003623(n) + 1 = A(B(n)) + 1, where A(B(n)) are the Wythoff AB-numbers. - Michel Dekking, Sep 15 2016
Extensions
Definition corrected by Jeffrey Shallit, Dec 21 2023
Comments