cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089910 Indices n at which blocks (1;1) occur in infinite Fibonacci word, i.e., such that A005614(n-1) = A005614(n-2) = 1.

Original entry on oeis.org

4, 9, 12, 17, 22, 25, 30, 33, 38, 43, 46, 51, 56, 59, 64, 67, 72, 77, 80, 85, 88, 93, 98, 101, 106, 111, 114, 119, 122, 127, 132, 135, 140, 145, 148, 153, 156, 161, 166, 169, 174, 177, 182, 187, 190, 195, 200, 203, 208, 211, 216, 221, 224, 229, 232, 237, 242, 245
Offset: 1

Views

Author

Benoit Cloitre, Nov 15 2003

Keywords

Comments

a(n) is the number k such that floor(k/r) = floor(n*r^2), where r = golden ratio. - Clark Kimberling, May 03 2015

Crossrefs

Programs

  • Maple
    phi:=(1+sqrt(5))/2:  seq(floor(phi*floor(n*phi^2))+1, n=1..80); # Michel Dekking, Sep 15 2016
  • Mathematica
    r = GoldenRatio; u = Flatten[Table[Select[Range[Floor[(r^2 + r) n], Floor[(r^2 + r) n + 1]], Floor[#/r] == Floor[n*r^2] &], {n, 1, 100}]] (* Clark Kimberling, May 03 2015 *)
  • Python
    from math import isqrt
    def A089910(n): return (n+isqrt(5*n**2)&-2)+n+1 # Chai Wah Wu, Aug 29 2022

Formula

a(n) = floor((2+sqrt(5))*n) + 0 or 1;
floor(n*(2+sqrt(5))) + b(a(n)) - a(n) = 0 where b(x) = A078588(x) = x + 1 + ceiling(x*sqrt(5)) - 2*ceiling(x*(1+sqrt(5))/2).
For n >= 2, a(n) = a(n-1) + d, where d = 5 if n-1 is in A000201, else d = 3. - Clark Kimberling, May 03 2015
a(n) = A003623(n) + 1 = A(B(n)) + 1, where A(B(n)) are the Wythoff AB-numbers. - Michel Dekking, Sep 15 2016

Extensions

Definition corrected by Jeffrey Shallit, Dec 21 2023