A035336 a(n) = 2*floor(n*phi) + n - 1, where phi = (1+sqrt(5))/2.
2, 7, 10, 15, 20, 23, 28, 31, 36, 41, 44, 49, 54, 57, 62, 65, 70, 75, 78, 83, 86, 91, 96, 99, 104, 109, 112, 117, 120, 125, 130, 133, 138, 143, 146, 151, 154, 159, 164, 167, 172, 175, 180, 185, 188, 193, 198, 201, 206, 209, 214, 219, 222, 227, 230, 235, 240
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 4.
- J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
- Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3.
- Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
- Clark Kimberling and Kenneth B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, Vol. 123, No. 2 (2016), pp. 267-273.
- Johan Kok, Integer sequences with conjectured relation with certain graph parameters of the family of linear Jaco graphs, arXiv:2507.16500 [math.CO], 2025. See p. 5.
- N. J. A. Sloane, Classic Sequences.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a035336 n = a035336_list !! (n-1) a035336_list = elemIndices 0 a005713_list -- Reinhard Zumkeller, Dec 30 2011
-
Magma
[2*Floor(n*(1+Sqrt(5))/2)+n-1: n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
-
Maple
Digits := 100: t := (1+sqrt(5))/2; [ seq(2*floor((n+1)*t)+n,n=0..80) ];
-
Mathematica
Table[2*Floor[n*(1 + Sqrt[5])/2] + n - 1, {n, 50}] (* Wesley Ivan Hurt, Nov 21 2017 *) Array[2 Floor[# GoldenRatio] + # - 1 &, 60] (* Robert G. Wilson v, Dec 12 2017 *)
-
Python
from sympy import floor from mpmath import phi def a(n): return 2*floor(n*phi) + n - 1 # Indranil Ghosh, Jun 10 2017
-
Python
from math import isqrt def A035336(n): return (n+isqrt(5*n**2)&-2)+n-1 # Chai Wah Wu, Aug 17 2022
Formula
a(n) = A(n) + A(A(n)), with A(A(n))=A003622(n) (Wythoff AA-numbers).
Equals A022342(A003622(n)+1). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001, sequence reference updated by Peter Munn, Nov 23 2017
A005713(a(n)) = 0. - Reinhard Zumkeller, Dec 30 2011
a(n) = A089910(n) - 2. - Bob Selcoe, Sep 21 2014
Comments