A086043 Concatenation of first n twin primes.
3, 35, 357, 35711, 3571113, 357111317, 35711131719, 3571113171929, 357111317192931, 35711131719293141, 3571113171929314143, 357111317192931414359, 35711131719293141435961, 3571113171929314143596171, 357111317192931414359617173, 357111317192931414359617173101
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..270
- C. K. Caldwell, Twin Primes.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
Crossrefs
Programs
-
Maple
Primes:= select(isprime, {seq(i,i=1..100,2)}): T1:= Primes intersect map(`+`,Primes,2): Twins:= sort(convert(T1 union map(`-`,T1,2),list)): dcat:= (a,b) -> a*10^(1+ilog10(b))+b: A[1]:= 3: for n from 2 to nops(Twins) do A[n]:= dcat(A[n-1],Twins[n]) od: seq(A[i],i=1..nops(Twins)); # Robert Israel, Sep 01 2016
-
Mathematica
Table[FromDigits@ Flatten@ Map[IntegerDigits, Take[#, n]], {n, Length@ #}] &[Union@ Join[#, # + 2] &@ Select[Prime@ Range@ 17, NextPrime@ # - 2 == # &]] (* Michael De Vlieger, Sep 01 2016 *) Module[{tps=Union[Flatten[Select[Partition[Prime[Range[50]],2,1],#[[2]]-#[[1]] == 2&]]]},FromDigits[Flatten[IntegerDigits/@#]]&/@Table[Take[tps,n],{n,Length[tps]}]] (* Harvey P. Dale, Jun 16 2022 *)
-
PARI
concattwprb(n) = { y=3; forprime(x=5,n, if(isprime(x+2) || isprime(x-2), y=eval(concat(Str(y),Str(x))); print1(y",") ) ) }
Extensions
Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
Comments