A089934 Table T(n,k) of the number of n X k matrices on {0,1} without adjacent 0's in any row or column.
2, 3, 3, 5, 7, 5, 8, 17, 17, 8, 13, 41, 63, 41, 13, 21, 99, 227, 227, 99, 21, 34, 239, 827, 1234, 827, 239, 34, 55, 577, 2999, 6743, 6743, 2999, 577, 55, 89, 1393, 10897, 36787, 55447, 36787, 10897, 1393, 89, 144, 3363, 39561, 200798, 454385, 454385, 200798
Offset: 1
Examples
Table starts: ======================================================== n\k| 1 2 3 4 5 6 7 ---|---------------------------------------------------- 1 | 2 3 5 8 13 21 34 ... 2 | 3 7 17 41 99 239 577 ... 3 | 5 17 63 227 827 2999 10897 ... 4 | 8 41 227 1234 6743 36787 200798 ... 5 | 13 99 827 6743 55447 454385 3729091 ... 6 | 21 239 2999 36787 454385 5598861 69050253 ... 7 | 34 577 10897 200798 3729091 69050253 1280128950 ... ... - _Andrew Howroyd_, Jun 06 2017 a(2,2)=7: 11 11 11 10 10 01 01 11 10 01 11 01 11 10
Links
- Liang Kai, Antidiagonals n = 1..77, flattened (antidiagonals n = 1..49 from Alois P. Heinz)
- Kai Liang, Independent Set Enumeration and Estimation of Related Constants of Grid Graphs, arXiv:2507.04007 [math.CO], 2025. See p. 4.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
Crossrefs
Programs
-
PARI
step(v, S)={vector(#v, i, sum(j=1, #v, v[j]*!bitand(S[i], S[j])))} mkS(k)={select(b->!bitand(b,b>>1), [0..2^k-1])} T(n,k)={my(S=mkS(k), v=vector(#S, i, i==1)); for(n=1, n, v=step(v,S)); vecsum(v)} \\ Andrew Howroyd, Dec 24 2019
Comments