A089944 Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0.
1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 20, 15, 5, 1, 6, 48, 54, 24, 6, 1, 7, 112, 189, 112, 35, 7, 1, 8, 256, 648, 512, 200, 48, 8, 1, 9, 576, 2187, 2304, 1125, 324, 63, 9, 1, 10, 1280, 7290, 10240, 6250, 2160, 490, 80, 10, 1, 11, 2816, 24057, 45056, 34375, 14256, 3773, 704, 99, 11, 1
Offset: 0
Examples
Rows begin: {1, 2, 3, 4, 5, 6, 7,..}, {1, 3, 8, 20, 48, 112, 256,..}, {1, 4, 15, 54, 189, 648, 2187,..}, {1, 5, 24, 112, 512, 2304, 10240,..}, {1, 6, 35, 200, 1125, 6250, 34375,..}, {1, 7, 48, 324, 2160, 14256, 93312,..}, {1, 8, 63, 490, 3773, 28812, 218491,..},..
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11324 (first 150 antidiagonals).
Crossrefs
Programs
-
Mathematica
A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1); Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
-
PARI
T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1))
Formula
T(n,k) = (k+n+1)*(n+1)^(k-1).
E.g.f.: (1+x)*exp(x)/(1-y*exp(x)).
Comments