cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A255116 Number of n-length words on {0,1,2,3} in which 0 appears only in runs of length 2.

Original entry on oeis.org

1, 3, 10, 33, 108, 354, 1161, 3807, 12483, 40932, 134217, 440100, 1443096, 4731939, 15516117, 50877639, 166828734, 547034553, 1793736576, 5881695930, 19286191449, 63239784075, 207364440015, 679951894392, 2229575035401, 7310818426248, 23972310961920
Offset: 0

Views

Author

Milan Janjic, Feb 14 2015

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 3,  a[2]== 10, a[n] == 3 a[n - 1] + 3 a[n - 3]}, a[n], {n, 0, 25}]
    LinearRecurrence[{3,0,3},{1,3,10},30] (* Harvey P. Dale, Feb 20 2023 *)
  • PARI
    Vec(-(x^2+1)/(3*x^3+3*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015

Formula

a(n+3) = 3*a(n+2) + 3*a(n) with n>1, a(0) = 1, a(1) = 3, a(2) = 10.
G.f.: -(x^2+1) / (3*x^3+3*x-1). - Colin Barker, Feb 15 2015
a(n) = A089978(n) + A089978(n-2). - R. J. Mathar, Aug 04 2019

A089979 Expansion of 1/(1-4x-4x^3).

Original entry on oeis.org

1, 4, 16, 68, 288, 1216, 5136, 21696, 91648, 387136, 1635328, 6907904, 29180160, 123261952, 520679424, 2199438336, 9290801152, 39245922304, 165781442560, 700288974848, 2958139588608, 12495684124672, 52783892398080
Offset: 0

Views

Author

Paul Barry, Nov 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - 4*x - 4*x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{4,0,4}, {1,4,16}, 50] (* G. C. Greubel, Apr 29 2017 *)
  • PARI
    x='x+O('x^50); Vec(1/(1 - 4*x - 4*x^3)) \\ G. C. Greubel, Apr 29 2017

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n-2*k, k)*4^(n-2*k).
a(n) = 4*a(n-1) + 4*a(n-3). - G. C. Greubel, Apr 29 2017
Showing 1-2 of 2 results.