cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089996 a(n) = primes generated by the function ( f[n_]=Floor[(A004001[n]*Prime[n])*Log[2]/(2*PrimePi[n]+1)]).

Original entry on oeis.org

3, 5, 13, 17, 41, 53, 59, 61, 101, 127, 151, 167, 193, 269, 277, 281, 283, 313, 359, 419, 421, 439, 463, 467, 499, 509, 619, 691, 743, 787, 853, 859, 907, 1061, 1069, 1097, 1181, 1229, 1249, 1277, 1289, 1303, 1381, 1427, 1453, 1531, 1571, 1583, 1609, 1741
Offset: 1

Views

Author

Roger L. Bagula, Jan 14 2004

Keywords

Comments

A prime generating function based on the primes, A004001 and the distribution of the primes.
By itself the integer function : f[n_]=Floor[(Conway[n]*Prime[n])*Log[2]/(2*PrimePi[n]+1)] is not very interesting: it is made to match the function g[n_]=n*Log[n]

Crossrefs

Cf. A004001.

Programs

  • Mathematica
    digits=6*200 Conway[n_Integer?Positive] := Conway[n] =Conway[Conway[n-1]] + Conway[n - Conway[n-1]] Conway[1] = Conway[2] = 1 (* PrimeQ sieve function *) a=Table[If[PrimeQ[Floor[(Conway[n]*Prime[n])*Log[2]/(2*PrimePi[n]+1)]]==True, Floor[(Conway[n]*Prime[n])*Log[2]/(2*PrimePi[n]+1)], 0], {n, 1, digits}] (* eliminate the extra zeros *) b=Union[a] Delete[b, 1]