A090055
Numbers n divisible by at least one nontrivial permutation (rearrangement) of the digits of n.
Original entry on oeis.org
105, 108, 405, 510, 540, 702, 703, 810, 1001, 1005, 1008, 1020, 1050, 1053, 1080, 2002, 2016, 2025, 2040, 2050, 2079, 2100, 2106, 3003, 3024, 3042, 3045, 3060, 3105, 3402, 3510, 4004, 4005, 4050, 4070, 4080, 4200, 5005, 5010, 5040
Offset: 1
a(27)=3045 because 3045 is divisible by 435, a nontrivial permutation of 3045. (0435)
A090061
Numbers k divisible by exactly two nontrivial permutations (rearrangements) of the digits of k, excluding all permutations that result in digit loss.
Original entry on oeis.org
571428, 867132, 874125, 923076, 5179428, 5714028, 5714280, 5714820, 5719428, 5971428, 8524710, 8571042, 8671320, 8679132, 8741250, 8749125, 8914752, 8957142, 9230760, 9239076, 37451268, 41957028, 42195708, 42713568, 42915780, 42971580, 43157286, 43751286, 48713562, 51374268
Offset: 1
a(4)=923076 is a term because 923076 is divisible by both 230769 and 307692, two nontrivial permutations of 923076 with the same number of digits.
A090053
Numbers divisible by the number formed when their digits are sorted in ascending order, excluding trivial cases.
Original entry on oeis.org
105, 108, 405, 510, 540, 702, 703, 810, 1001, 1005, 1008, 1020, 1050, 1080, 2002, 2016, 2025, 2040, 2050, 2100, 3003, 3042, 3060, 3105, 3510, 4004, 4005, 4050, 4080, 4200, 5005, 5010, 5040, 5049, 5100, 5130, 5200, 5400, 6006, 6084
Offset: 1
a(1)=105 because the digits of 105 in ascending order are 015 and 105 is divisible by 15. a(24)=3105 because the digits of 3105 in ascending order are 135 and 3105 is divisible by 135.
A382946
a(n) is the least positive integer k having a proper divisor d such that the base n expansions of k and d, without leading zeros, have, up to order, the same digits, or a(n) = -1 if no such k exists.
Original entry on oeis.org
-1, 64, 36, 16, 700, 36, 42, 64, 3105, 45, 594, 105, 130, 168, 945, 120, 1666, 96, 266, 275, 2457, 231, 460, 351, 450, 273, 7938, 175, 7714, 280, 682, 1024, 308, 459, 7525, 741, 962, 665, 27300, 288, 17097, 560, 1290, 1265, 18540, 1035, 1974, 540, 952, 715
Offset: 2
The first terms, alongside an appropriate divisor d, in bases 10 and n, are:
n a(n) d n in base n d in base n
-- ---- ---- ----------- -----------
2 -1 N/A N/A N/A
3 64 32 2,1,0,1 1,0,1,2
4 36 18 2,1,0 1,0,2
5 16 8 3,1 1,3
6 700 350 3,1,2,4 1,3,4,2
7 36 12 5,1 1,5
8 42 21 5,2 2,5
9 64 16 7,1 1,7
10 3105 1035 3,1,0,5 1,0,3,5
11 45 15 4,1 1,4
12 594 198 4,1,6 1,4,6
13 105 21 8,1 1,8
14 130 65 9,4 4,9
15 168 56 11,3 3,11
16 945 315 3,11,1 1,3,11
-
a(n) = {
if (n==2, return (-1));
for (k = 1, oo,
my (t = vecsort(digits(k, n)));
fordiv (k, d,
if (d < k && vecsort(digits(d, n))==t,
return (k);););); }
-
from sympy import divisors
from sympy.ntheory import digits
from itertools import count
def a(n):
if n == 2:
return -1
for k in count(2*n):
divs, kdigs = divisors(k), sorted(digits(k, n)[1:])
for d in sorted(divs[:-1], reverse=True):
ddigs = sorted(digits(d, n)[1:])
if ddigs == kdigs:
return k
if len(ddigs) < len(kdigs):
break
print([a(n) for n in range(2, 52)]) # Michael S. Branicky, Apr 13 2025
Showing 1-4 of 4 results.
Comments