A090079 In binary expansion of n: reduce contiguous blocks of 0's to 0 and contiguous blocks of 1's to 1.
0, 1, 2, 1, 2, 5, 2, 1, 2, 5, 10, 5, 2, 5, 2, 1, 2, 5, 10, 5, 10, 21, 10, 5, 2, 5, 10, 5, 2, 5, 2, 1, 2, 5, 10, 5, 10, 21, 10, 5, 10, 21, 42, 21, 10, 21, 10, 5, 2, 5, 10, 5, 10, 21, 10, 5, 2, 5, 10, 5, 2, 5, 2, 1, 2, 5, 10, 5, 10, 21, 10, 5, 10, 21, 42, 21, 10, 21, 10, 5, 10, 21, 42, 21
Offset: 0
Examples
100 -> '1100100' -> [11][00][1][00] -> [1][0][1][0] -> '1010' -> 10=a(100).
Links
Programs
-
Haskell
a090079 = foldr (\b v -> 2 * v + b) 0 . map head . group . a030308_row -- Reinhard Zumkeller, Feb 16 2013
-
Mathematica
Table[FromDigits[#, 2] &@ Map[First, Split@ IntegerDigits[n, 2]], {n, 0, 83}] (* Michael De Vlieger, Dec 12 2016 *) FromDigits[Split[IntegerDigits[#,2]][[All,1]],2]&/@Range[0,90] (* Harvey P. Dale, Oct 10 2017 *)
-
Python
from itertools import groupby def a(n): return int("".join(k for k, g in groupby(bin(n)[2:])), 2) print([a(n) for n in range(84)]) # Michael S. Branicky, Jul 23 2022
Formula
Conjecture: a(n) = (2^(A005811(n)+1) + (1-(-1)^n)/2 - 2)/3. - Velin Yanev, Dec 12 2016
Comments