0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0
Offset: 0
A091562
Triangle read by rows, related to Pascal's triangle, starting with 1, 0, 0.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 5, 7, 5, 2, 3, 10, 17, 17, 10, 3, 5, 20, 41, 51, 41, 20, 5, 8, 38, 91, 136, 136, 91, 38, 8, 13, 71, 195, 339, 405, 339, 195, 71, 13, 21, 130, 403, 799, 1107, 1107, 799, 403, 130, 21, 34, 235, 812, 1807, 2845, 3297, 2845, 1807, 812, 235, 34
Offset: 0
Triangle begins:
1;
0,0;
1,1,1;
1,2,2,1;
2,5,7,5,2;
...
A090173
Triangle read by rows, related to Pascal's triangle read mod 2, starting with 0, 0, 1.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1
Offset: 0
Triangle begins
0;
0,1;
0,1,1;
0,0,1,0;
0,1,1,1,1;
...
a(n, k) =
A090174(n-1, k-1), k>0, 0 otherwise.
A205575
Triangle read by rows, related to Pascal's triangle, starting with rows 1; 1,0.
Original entry on oeis.org
1, 1, 0, 2, 2, 1, 3, 5, 4, 1, 5, 12, 14, 8, 2, 8, 25, 38, 32, 15, 3, 13, 50, 94, 104, 71, 28, 5, 21, 96, 215, 293, 260, 149, 51, 8, 34, 180, 468, 756, 822, 612, 304, 92, 13, 55, 331, 980, 1828, 2346, 2136, 1376, 604, 164, 21
Offset: 0
Triangle begins :
1
1, 0
2, 2, 1
3, 5, 4, 1
5, 12, 14, 8, 2
8, 25, 38, 32, 15, 3
13, 50, 94, 104, 71, 28, 5
-
T(n,k) = {if(n<0, return(0)); if (n==0, if (k<0, return(0)); if (k==0, return(1))); if (n==1, if (k<0, return(0)); if (k==0, return(1)); if (k==1, return(0))); T(n-1,k)+T(n-1,k-1)+T(n-2,k)+T(n-2,k-1)+T(n-2,k-2);} \\ Michel Marcus, Oct 27 2021
Comments