cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090184 Number of partitions of the n-th 3-smooth number into parts 2 and 3.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 9, 10, 11, 13, 14, 17, 19, 22, 25, 28, 33, 37, 41, 43, 49, 55, 65, 73, 82, 86, 97, 109, 122, 129, 145, 163, 171, 193, 217, 244, 257, 289, 325, 342, 365, 385, 433, 487, 513, 577, 649, 683, 730, 769, 865, 973, 1025, 1094, 1153
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 21 2004

Keywords

Examples

			n=11: A003586(11) = 2^3 * 3 = 24: 3+3+3+3+3+3+3+3 = 3+3+3+3+3+3+2+2+2 = 3+3+3+3+2+2+2+2+2+2 = 3+3+2+2+2+2+2+2+2+2+2 = 2+2+2+2+2+2+2+2+2+2+2+2: a(11)=5.
		

Crossrefs

Programs

  • Mathematica
    smooth3Q[n_] := n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3] == 1;
    Length[IntegerPartitions[#, All, {2, 3}]]& /@ Select[Range[10000], smooth3Q] (* Jean-François Alcover, Oct 13 2021 *)
    With[{nn = 6^5}, Map[Floor[#/2] - Floor[#/3] &, Union@ Flatten@ Table[2^a * 3^b, {a, 0, Log2[#]}, {b, 0, Log[3, #/(2^a)]}] &[nn] + 2]] (* Michael De Vlieger, Oct 13 2021 *)
  • Python
    from sympy import integer_log
    def A090184(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1))
        return ((m:=bisection(f,n,n)+2)>>1)-m//3 # Chai Wah Wu, Oct 22 2024

Formula

a(2^i * 3^j) = floor(2^(i-1) * 3^(j-1) + 1), i*j>0.
a(n) = A103221(A003586(n)).

Extensions

Offset changed to 1 by Alois P. Heinz, Oct 15 2021