cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090199 a(n) = N(6,n), where N(6,x) is the 6th Narayana polynomial.

Original entry on oeis.org

1, 132, 903, 3304, 8925, 20076, 39907, 72528, 123129, 198100, 305151, 453432, 653653, 918204, 1261275, 1698976, 2249457, 2933028, 3772279, 4792200, 6020301, 7486732, 9224403, 11269104, 13659625, 16437876, 19649007, 23341528, 27567429
Offset: 0

Views

Author

Philippe Deléham, Jan 22 2004

Keywords

Crossrefs

Programs

  • Magma
    [(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1): n in [0..30]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    Table[(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1), {n,0,30}] (* G. C. Greubel, Feb 16 2021 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,132,903,3304,8925,20076},30] (* or *) CoefficientList[Series[(1+126 x+126 x^2-154 x^3+21 x^4)/(-1+x)^6,{x,0,30}],x] (* Harvey P. Dale, Jul 24 2021 *)
  • PARI
    a(n)=n^5+15*n^4+50*n^3+50*n^2+15*n+1 \\ Charles R Greathouse IV, Jan 17 2012
    
  • Sage
    [(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1) for n in (0..30)] # G. C. Greubel, Feb 16 2021
    

Formula

a(n) = N(6, n)= Sum_{k>0} A001263(6, k)*n^(k-1) = n^5 + 15*n^4 + 50*n^3 + 50*n^2 + 15*n + 1.
G.f.: (1 +126*x +126*x^2 -154*x^3 +21*x^4)/(1-x)^6. - Philippe Deléham, Apr 03 2013
E.g.f.: (1 +131*x +320*x^2 +165*x^3 +25*x^4 +x^5)*exp(x). - G. C. Greubel, Feb 16 2021

Extensions

Corrected generating function in Formula field. - Harvey P. Dale, Jul 24 2021