A090251 a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29.
2, 29, 839, 24302, 703919, 20389349, 590587202, 17106639509, 495501958559, 14352450158702, 415725552643799, 12041688576511469, 348793243166188802, 10102962363242963789, 292637115290879761079, 8476373381072270107502
Offset: 0
Examples
a(4) =703919 = 29a(3) - a(2) = 29*24302 - 839= ((29+sqrt(837))/2)^4 + ((29-sqrt(837))/2)^4 = 703918.99999857 + 0.00000142 =703919. (x,y) = (2;0), (29;1), (839;29), (24302,840), ..., give the nonnegative integer solutions to x^2 - 93*(3*y)^2 =+4.
References
- O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
Links
Crossrefs
Programs
-
Mathematica
a[0] = 2; a[1] = 29; a[n_] := 29a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *) LinearRecurrence[{29,-1},{2,29},30] (* Harvey P. Dale, May 28 2013 *)
-
Sage
[lucas_number2(n,29,1) for n in range(0,16)] # Zerinvary Lajos, Jun 27 2008
Formula
a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29. a(n) = ((29+sqrt(837))/2)^n + ((29-sqrt(837))/2)^n, (a(n))^2 =a(2n)+2.
a(n) = S(n, 29) - S(n-2, 29) = 2*T(n, 29/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 27)=A097781(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (29+3*sqrt(93))/2 and am := (29-3*sqrt(93))/2.
G.f.: (2-29*x)/(1-29*x+x^2).
Extensions
More terms from Robert G. Wilson v, Jan 30 2004
Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004
Comments