A090317 Row sums of triangle in A090285.
1, 2, 7, 28, 118, 510, 2235, 9876, 43870, 195556, 873814, 3911168, 17527904, 78622982, 352911939, 1584927828, 7120769526, 32002212252, 143859840114, 646819996008, 2908670252676, 13081556909292, 58839348572574, 264674150692488, 1190649451348908, 5356483791828840, 24098774900561500
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
Table[SeriesCoefficient[(1-x^2*((1-Sqrt[1-4*x])/(2*x))^4)/(1-2*x*((1-Sqrt[1-4*x])/(2*x))^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
Maxima
a(n):=if n=0 then 1 else 4*binomial(2*n-1,n)/(n+1)+3*sum(((k+1)*2^(k)*binomial(2*n-1,n-k-1))/(n+k+1),k,1,n-1); /* Vladimir Kruchinin, Feb 21 2019 */
-
PARI
x='x+O('x^66); Vec((1-x^2*((1-sqrt(1-4*x))/(2*x))^4)/(1-2*x*((1-sqrt(1-4*x))/(2*x))^2)) \\ Joerg Arndt, May 11 2013
Formula
G.f.: (1-x^2*c(x)^4)/(1-2x*c(x)^2), where c(x) is the g.f. of the Catalan numbers A000108. - Paul Barry, Mar 13 2009
Recurrence: 2*(n+1)*(n+3)*a(n) = (17*n^2+56*n-21)*a(n-1) - 18*(n+4)*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 9^n/2^(n+2). - Vaclav Kotesovec, Oct 14 2012
a(n) = 4*C(2*n-1,n)/(n+1)+3*Sum_{k=1..n-1}(k+1)*2^k*C(2*n-1,n-k-1)/(n+k+1), n>0, a(0)=1. - Vladimir Kruchinin, Feb 21 2019
Extensions
Term 15 corrected by Paul Barry, Mar 13 2009
Comments