cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090317 Row sums of triangle in A090285.

Original entry on oeis.org

1, 2, 7, 28, 118, 510, 2235, 9876, 43870, 195556, 873814, 3911168, 17527904, 78622982, 352911939, 1584927828, 7120769526, 32002212252, 143859840114, 646819996008, 2908670252676, 13081556909292, 58839348572574, 264674150692488, 1190649451348908, 5356483791828840, 24098774900561500
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2004

Keywords

Comments

Apply the inverse of the Riordan array (1/(1-x^2),x/(1+x)^2) to 2^n. - Paul Barry, Mar 13 2009
Hankel transform is A079935. - Paul Barry, Mar 13 2009

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1-x^2*((1-Sqrt[1-4*x])/(2*x))^4)/(1-2*x*((1-Sqrt[1-4*x])/(2*x))^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • Maxima
    a(n):=if n=0 then 1 else 4*binomial(2*n-1,n)/(n+1)+3*sum(((k+1)*2^(k)*binomial(2*n-1,n-k-1))/(n+k+1),k,1,n-1); /* Vladimir Kruchinin, Feb 21 2019 */
  • PARI
    x='x+O('x^66); Vec((1-x^2*((1-sqrt(1-4*x))/(2*x))^4)/(1-2*x*((1-sqrt(1-4*x))/(2*x))^2)) \\ Joerg Arndt, May 11 2013
    

Formula

a(n+1) = A000108(n+1) + Sum_{k=0..n} a(n-k)*A001700(k); a(0) = 1.
G.f.: (1-x^2*c(x)^4)/(1-2x*c(x)^2), where c(x) is the g.f. of the Catalan numbers A000108. - Paul Barry, Mar 13 2009
Recurrence: 2*(n+1)*(n+3)*a(n) = (17*n^2+56*n-21)*a(n-1) - 18*(n+4)*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 9^n/2^(n+2). - Vaclav Kotesovec, Oct 14 2012
a(n) = 4*C(2*n-1,n)/(n+1)+3*Sum_{k=1..n-1}(k+1)*2^k*C(2*n-1,n-k-1)/(n+k+1), n>0, a(0)=1. - Vladimir Kruchinin, Feb 21 2019

Extensions

Term 15 corrected by Paul Barry, Mar 13 2009