A090367 Shifts 1 place left under the INVERT transform of the BINOMIAL transform of the self-convolution cube of this sequence.
1, 1, 5, 34, 276, 2509, 24739, 259815, 2873376, 33207790, 398897289, 4960652325, 63676368387, 841741913795, 11438028248093, 159536511439266, 2281321298635427, 33411684617642665, 500761214428795093, 7674842860939188928, 120209960716130232745
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
bintr:= proc(p) local b; b:= proc(n) option remember; add(p(k) *binomial(n,k), k=0..n) end end: invtr:= proc(p) local b; b:= proc(n) option remember; `if`(n<1, 1, add(b(n-i) *p(i-1), i=1..n+1)) end end: s:= proc(n) option remember; add(a(i)*a(n-i), i=0..n) end: b:= invtr(bintr(n-> add(s(i)*a(n-i), i=0..n))): a:= n-> `if`(n<0, 0, b(n-1)): seq(a(n), n=0..25); # Alois P. Heinz, Jun 28 2012
-
Mathematica
m = 25; A[] = 1; Do[A[x] = 1/(1 - A[x/(1-x)]^3*(x/(1-x))) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jun 04 2018 *)
-
PARI
{a(n)=local(A); if(n<0,0,A=1+x+x*O(x^n); for(k=1,n,B=subst(A^3,x,x/(1-x))/(1-x)+x*O(x^n); A=1+x*A*B);polcoeff(A,n,x))}
Formula
G.f.: A(x) = 1/(1 - A(x/(1-x))^3*x/(1-x) ).