cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090370 Least m > 3 such that gcd(n-1, m*n - 1) = m-1.

Original entry on oeis.org

4, 5, 6, 4, 8, 5, 4, 6, 12, 4, 14, 8, 4, 5, 18, 4, 20, 5, 4, 12, 24, 4, 6, 14, 4, 5, 30, 4, 32, 5, 4, 18, 6, 4, 38, 20, 4, 5, 42, 4, 44, 5, 4, 24, 48, 4, 8, 6, 4, 5, 54, 4, 6, 5, 4, 30, 60, 4, 62, 32, 4, 5, 6, 4
Offset: 4

Views

Author

Lekraj Beedassy, Nov 27 2003

Keywords

Comments

Choosing a pair (m, n) so as to redefine 1 hour = m*n minutes and 1 minute = m*n seconds, then the three hands of a fictitious n-hour clock coincide in exactly m-1 equally spaced positions, including that of the n o'clock position. For instance, in the cases where we select (m, n) as (6, 11), (8, 15), (4, 25), with m*n respectively equal to 66, 120, 100 (implying 1 hour = 66 minutes, 1 minute = 66 seconds; 1 hour = 120 minutes, 1 minute = 120 seconds; 1 hour = 100 minutes, 1 minute = 100 seconds), the hands coincide in exactly 6-1=5, 8-1=7, 4-1=3 equally spaced positions on a 11-hour, 15-hour, 25-hour clock respectively.

Examples

			We have a(50)=8 because 50*8 = 400 is the least multiple of 50 such that gcd(50-1, 400-1) = 8 - 1 = 7.
		

Crossrefs

Programs

  • Maple
    A090370:=proc(n) local m; m:=4; while  (gcd(n-1, m*n - 1) <> m-1) do m:=m+1; end;  return m; end; # Søren Eilers, Aug 09 2018
  • Mathematica
    a[n_] := Block[{m=4}, While[GCD[n-1, n*m-1] != m-1, m++]; m]; Table[a[k], {k, 4, 67}] (* Giovanni Resta, Aug 09 2018 *)
  • PARI
    a(n) = {m = 4; while (gcd(n-1,m*n - 1) != m-1, m++); return (m);} \\ Michel Marcus, Jul 27 2013

Formula

a(n) = 1 + A090368(k) for n=2k. [corrected by Søren Eilers, Aug 09 2018]
a(n) = 1 + A090369(k) for n=2k+1.

Extensions

a(46) and a(49) corrected by Søren Eilers, Aug 09 2018