A090370 Least m > 3 such that gcd(n-1, m*n - 1) = m-1.
4, 5, 6, 4, 8, 5, 4, 6, 12, 4, 14, 8, 4, 5, 18, 4, 20, 5, 4, 12, 24, 4, 6, 14, 4, 5, 30, 4, 32, 5, 4, 18, 6, 4, 38, 20, 4, 5, 42, 4, 44, 5, 4, 24, 48, 4, 8, 6, 4, 5, 54, 4, 6, 5, 4, 30, 60, 4, 62, 32, 4, 5, 6, 4
Offset: 4
Keywords
Examples
We have a(50)=8 because 50*8 = 400 is the least multiple of 50 such that gcd(50-1, 400-1) = 8 - 1 = 7.
Links
- Giovanni Resta, Table of n, a(n) for n = 4..10000
Programs
-
Maple
A090370:=proc(n) local m; m:=4; while (gcd(n-1, m*n - 1) <> m-1) do m:=m+1; end; return m; end; # Søren Eilers, Aug 09 2018
-
Mathematica
a[n_] := Block[{m=4}, While[GCD[n-1, n*m-1] != m-1, m++]; m]; Table[a[k], {k, 4, 67}] (* Giovanni Resta, Aug 09 2018 *)
-
PARI
a(n) = {m = 4; while (gcd(n-1,m*n - 1) != m-1, m++); return (m);} \\ Michel Marcus, Jul 27 2013
Formula
a(n) = 1 + A090368(k) for n=2k. [corrected by Søren Eilers, Aug 09 2018]
a(n) = 1 + A090369(k) for n=2k+1.
Extensions
a(46) and a(49) corrected by Søren Eilers, Aug 09 2018
Comments