A090372 Number of unrooted planar 3-constellations with n triangles.
1, 6, 22, 174, 1479, 16808, 201834, 2631594, 35965555, 512062566, 7528425420, 113708935808, 1756853846316, 27676951028496, 443411345677658, 7209139541742750, 118738765611199983, 1978360119497335826
Offset: 1
Links
- M. Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. v.24 (2000), 337-368.
- V. A. Liskovets, Enumerative formulas for unrooted planar maps: a pattern, Electron. J. Combin., 11:1 (2004), R88.
Programs
-
Maple
with(numtheory): C_3 := proc(n) local s,d; if n=0 then RETURN(1) else s := -3^n*binomial(3*n,n); for d in divisors(n) do s := s+phi(n/d)*3^d*binomial(3*d,d) od; RETURN((4/(3*n))*(3^n*binomial(3*n,n)/((2*n+1)*(2*n+2))+s/2)); fi; end;
-
Mathematica
a[0] = 1; a[n_] := Module[{s, d}, s = -3^n Binomial[3n, n]; Do[s = s + EulerPhi[n/d] 3^d Binomial[3d, d], {d, Divisors[n]}]; (4/(3n)) (3^n Binomial[3n, n]/((2n+1)(2n+2)) + s/2)]; Array[a, 18] (* Jean-François Alcover, Jul 24 2018, from Maple *)
Comments