cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090371 Number of unrooted planar 2-constellations with n digons. Also number of n-edge unrooted planar Eulerian maps with bicolored faces.

Original entry on oeis.org

1, 3, 6, 20, 60, 291, 1310, 6975, 37746, 215602, 1262874, 7611156, 46814132, 293447817, 1868710728, 12068905911, 78913940784, 521709872895, 3483289035186, 23464708686960, 159346213738020, 1090073011199451, 7507285094455566, 52021636161126702
Offset: 1

Views

Author

Valery A. Liskovets, Dec 01 2003

Keywords

Comments

a(n) is also the number of unrooted planar hypermaps with n darts up to orientation-preserving homeomorphism (darts are semi-edges in the particular case of ordinary maps). - Valery A. Liskovets, Apr 13 2006

Examples

			The 3 Eulerian maps with 2 edges are the digon and two figure eight graphs ("8") in which both loops are colored, resp., black or white.
		

Crossrefs

Programs

  • Maple
    A090371 := proc(n)
        local s, d;
        if n=0 then
            1 ;
        else
            s := -2^n*binomial(2*n, n);
            for d in numtheory[divisors](n) do
                s := s+ numtheory[phi](n/d)*2^d*binomial(2*d, d)
            od;
            3/(2*n)*(2^n*binomial(2*n, n)/((n+1)*(n+2))+s/2);
        fi;
    end proc:
  • Mathematica
    h0[n_] := 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)); a[n_] := (h0[n] + DivisorSum[n, If[#>1, EulerPhi[#]*Binomial[n/#+2, 2]*h0[n/#], 0]&])/n; Array[a, 30] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
  • PARI
    h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
    a(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2,2)*h0(n/d)))/n; \\ Michel Marcus, Dec 11 2014

Extensions

More terms from Michel Marcus, Dec 11 2014

A069726 Number of rooted planar bi-Eulerian maps with 2n edges. Bi-Eulerian: all its vertices and faces are of even valency.

Original entry on oeis.org

1, 1, 6, 54, 594, 7371, 99144, 1412802, 21025818, 323686935, 5120138790, 82812679560, 1364498150904, 22839100002036, 387477144862128, 6651170184185802, 115346229450879978, 2018559015390399615, 35610482089433479410, 632770874050702595670, 11317118106279639106530
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Also counts rooted planar 3-constellations with n triangles: rooted planar maps with bicolored faces having n black triangular faces and an arbitrary number of white faces of degrees multiple to 3. - Valery A. Liskovets, Dec 01 2003

Crossrefs

Programs

  • Maple
    s := 4*(4-81*z)^(1/2): u := 36*I*z^(1/2): a := (s+u)^(1/3): b := (s-u)^(1/3):
    gf := 1 + ((b+a)*s + 108*I*z^(1/2)*(b-a) - 32*(9*z+1))/(432*z):
    simplify(series(gf, z, 22)): seq(coeff(%, z, n), n = 0..20);
    # Peter Luschny, May 19 2024
  • Mathematica
    Join[{1},Table[3^(n-1) Binomial[3n,n+1]/(n(2n+1)),{n,20}]] (* Harvey P. Dale, Oct 18 2013 *)
  • PARI
    A069726(n)=if(n,3^(n-1)*binomial(3*n,n+1)/n/(2*n+1),1)  \\ M. F. Hasler, Mar 26 2012

Formula

a(n) = 3^(n-1)*A000139(n).
a(0)=1, a(n) = 3^(n-1)*binomial(3n, n+1)/(n(2n+1)) for n >= 1.
G.f.: A(x) = (1 + 3*y - y^2)/3 where 3*x^2*y^3 - y + 1 = 0.
G.f. satisfies A(z) = 1 -47*z +3*z^2 +3*z*(22-9*z)*A(z) +9*z*(9*z-2)*A(z)^2 -81*z^2*A(z)^3.
a(n) ~ 2^(-2*n-1)*3^(4*n-1/2)/(sqrt(Pi)*n^(5/2)). - Ilya Gutkovskiy, Dec 04 2016
D-finite with recurrence 2*(n+1)*(2*n+1)*a(n) -9*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Mar 29 2023
G.f. 1/3 - 2/(27*z) + sqrt(4 - 81*z)*((sqrt(4 - 81*z)/2 + 9*i*sqrt(z)/2)^(1/3) + (sqrt(4 - 81*z)/2 - 9*i*sqrt(z)/2)^(1/3))/(54*z) - (((sqrt(4 - 81*z)/2 + 9*i*sqrt(z)/2)^(1/3) - (sqrt(4 - 81*z)/2 - 9*i*sqrt(z)/2)^(1/3))*i)/(2*sqrt(z)), where i = sqrt(-1). - Karol A. Penson, May 19 2024

Extensions

Entry revised by Editors of the OEIS, Mar 26 - 27 2012

A090373 Number of unrooted planar 4-constellations with n quadrangles.

Original entry on oeis.org

1, 10, 60, 875, 14600, 303814, 6846180, 165740155, 4221248540, 112001557620, 3071766596524, 86596464513410, 2498536503831640, 73533104142072810, 2201538635362482480, 66907117946947479163, 2060374053699504740000
Offset: 1

Views

Author

Valery A. Liskovets, Dec 01 2003

Keywords

Comments

These are planar maps with bicolored faces having n black quadrangular faces and an arbitrary number of white faces of degrees multiple to 4. The vertices can be and are colored so that any black quadrangle is colored counterclockwise 1,2,3,4. Isomorphisms are required to respect the colorings.

Crossrefs

Programs

  • Maple
    with(numtheory): C_4 := proc(n) local s,d; if n=0 then RETURN(1) else s := -4^n*binomial(4*n,n); for d in divisors(n) do s := s+phi(n/d)*4^d*binomial(4*d,d) od; RETURN((5/(4*n))*(4^n*binomial(4*n,n)/((3*n+1)*(3*n+2))+s/2)); fi; end;
  • Mathematica
    a[n_] := Module[{s}, s = -4^n Binomial[4n, n]; Do[s += EulerPhi[n/d] 4^d Binomial[4d, d], {d, Divisors[n]}]; (5/(4n))(4^n Binomial[4n, n]/((3n+1)(3n+2)) + s/2)];
    Array[a, 17] (* Jean-François Alcover, Aug 29 2019 *)

Formula

a(n) = (5/(4*n))*(4^n*binomial(4*n,n)/((3*n+1)*(3*n+2))+s/2) where s = -4^n* binomial(4*n,n) + Sum_{d|n} (phi(n/d)*4^d*binomial(4*d,d)). - Jean-François Alcover, Aug 29 2019
Showing 1-3 of 3 results.