A090371
Number of unrooted planar 2-constellations with n digons. Also number of n-edge unrooted planar Eulerian maps with bicolored faces.
Original entry on oeis.org
1, 3, 6, 20, 60, 291, 1310, 6975, 37746, 215602, 1262874, 7611156, 46814132, 293447817, 1868710728, 12068905911, 78913940784, 521709872895, 3483289035186, 23464708686960, 159346213738020, 1090073011199451, 7507285094455566, 52021636161126702
Offset: 1
The 3 Eulerian maps with 2 edges are the digon and two figure eight graphs ("8") in which both loops are colored, resp., black or white.
- R. J. Mathar, Table of n, a(n) for n = 1..100
- M. Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. v.24 (2000), 337-368.
- A. Mednykh and R. Nedela, Counting unrooted hypermaps on closed orientable surface, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA).
- A. Mednykh and R. Nedela, Enumeration of unrooted hypermaps of a given genus, Discr. Math., 310 (2010), 518-526. [From _N. J. A. Sloane_, Dec 19 2009]
- A. Mednykh and R. Nedela, Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 2.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
-
A090371 := proc(n)
local s, d;
if n=0 then
1 ;
else
s := -2^n*binomial(2*n, n);
for d in numtheory[divisors](n) do
s := s+ numtheory[phi](n/d)*2^d*binomial(2*d, d)
od;
3/(2*n)*(2^n*binomial(2*n, n)/((n+1)*(n+2))+s/2);
fi;
end proc:
-
h0[n_] := 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)); a[n_] := (h0[n] + DivisorSum[n, If[#>1, EulerPhi[#]*Binomial[n/#+2, 2]*h0[n/#], 0]&])/n; Array[a, 30] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
-
h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2));
a(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2,2)*h0(n/d)))/n; \\ Michel Marcus, Dec 11 2014
A069726
Number of rooted planar bi-Eulerian maps with 2n edges. Bi-Eulerian: all its vertices and faces are of even valency.
Original entry on oeis.org
1, 1, 6, 54, 594, 7371, 99144, 1412802, 21025818, 323686935, 5120138790, 82812679560, 1364498150904, 22839100002036, 387477144862128, 6651170184185802, 115346229450879978, 2018559015390399615, 35610482089433479410, 632770874050702595670, 11317118106279639106530
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..650
- M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, arXiv:math/0504018 [math.CO], 2005.
- M. Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. v.24 (2000), 337-368.
- V. A. Kazakov, M. Staudacher and Th. Wynter, Character expansion methods for matrix models of dually weighted graphs, arxiv:hep-th/9502132, 1995; Commun. Math. Phys. 177 (1996), 451-468.
- V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
-
s := 4*(4-81*z)^(1/2): u := 36*I*z^(1/2): a := (s+u)^(1/3): b := (s-u)^(1/3):
gf := 1 + ((b+a)*s + 108*I*z^(1/2)*(b-a) - 32*(9*z+1))/(432*z):
simplify(series(gf, z, 22)): seq(coeff(%, z, n), n = 0..20);
# Peter Luschny, May 19 2024
-
Join[{1},Table[3^(n-1) Binomial[3n,n+1]/(n(2n+1)),{n,20}]] (* Harvey P. Dale, Oct 18 2013 *)
-
A069726(n)=if(n,3^(n-1)*binomial(3*n,n+1)/n/(2*n+1),1) \\ M. F. Hasler, Mar 26 2012
Entry revised by Editors of the OEIS, Mar 26 - 27 2012
A090373
Number of unrooted planar 4-constellations with n quadrangles.
Original entry on oeis.org
1, 10, 60, 875, 14600, 303814, 6846180, 165740155, 4221248540, 112001557620, 3071766596524, 86596464513410, 2498536503831640, 73533104142072810, 2201538635362482480, 66907117946947479163, 2060374053699504740000
Offset: 1
-
with(numtheory): C_4 := proc(n) local s,d; if n=0 then RETURN(1) else s := -4^n*binomial(4*n,n); for d in divisors(n) do s := s+phi(n/d)*4^d*binomial(4*d,d) od; RETURN((5/(4*n))*(4^n*binomial(4*n,n)/((3*n+1)*(3*n+2))+s/2)); fi; end;
-
a[n_] := Module[{s}, s = -4^n Binomial[4n, n]; Do[s += EulerPhi[n/d] 4^d Binomial[4d, d], {d, Divisors[n]}]; (5/(4n))(4^n Binomial[4n, n]/((3n+1)(3n+2)) + s/2)];
Array[a, 17] (* Jean-François Alcover, Aug 29 2019 *)
Showing 1-3 of 3 results.
Comments