A090374 Number of rooted planar 4-constellations with n quadrangles: rooted planar maps with bicolored faces having n black quadrangular faces and an arbitrary number of white faces of degrees multiple to 4.
1, 10, 160, 3200, 72960, 1813504, 47923200, 1325629440, 37991219200, 1120005652480, 33789432561664, 1039157228994560, 32480974549811200, 1029463445864448000, 33023079530417356800, 1070513886720329515008, 35026358912891580579840, 1155516042520241436098560
Offset: 1
Links
- M. Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. v.24 (2000), 337-368.
Programs
-
Maple
A090374 := proc(n) 5*4^(n-1)*binomial(4*n, n)/((3*n+1)*(3*n+2)) end proc: seq(A090374(n),n=1..40) ; # R. J. Mathar, Mar 29 2023
-
Mathematica
a[n_] := 5 2^(2n) (4n-1)! / ((n-1)! (3n+2)!); Array[a, 18] (* Jean-François Alcover, Aug 28 2019 *)
-
PARI
vector(20, n, 5*4^(n-1)*binomial(4*n, n)/((3*n+1)*(3*n+2))) \\ Michel Marcus, Dec 11 2014
Formula
a(n) = 5*4^(n-1)*binomial(4*n, n)/((3*n+1)*(3*n+2)). - corrected by Michel Marcus, Dec 11 2014
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) -32*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 29 2023
Extensions
More terms from Michel Marcus, Dec 11 2014