A090375 Number of unrooted Eulerian maps with bicolored faces which are self-isomorphic under reversing the colors.
1, 1, 2, 4, 8, 17, 40, 93, 224, 538, 1344, 3352, 8448, 21573, 54912, 143037, 366080, 968083, 2489344, 6664856, 17199104, 46515759, 120393728, 328382874, 852017152, 2340706462, 6085836800, 16822999572, 43818024960, 121777594508, 317680680960, 887053276477
Offset: 1
Links
- M. Deryagina, On the enumeration of hypermaps which are self-equivalent with respect to reversing the colors of vertices, Preprint 2016.
- V. Liskovets, Some easily derivable integer sequences, J. Integer Seq., v.3 (2000), Article 00.2.2.
- V. A. Liskovets, Enumerative formulas for unrooted planar maps: a pattern, Electron. J. Combin., 11:1 (2004), R88.
Programs
-
Mathematica
A069727[n_] := (1/(2n)) (3*2^(n - 1) Binomial[2 n, n]/((n + 1) (n + 2)) + Sum[EulerPhi[n/k] d[n/k] 2^(k - 2) Binomial[2 k, k], {k, Most[Divisors[n]]}]) + q[n]; A069727[0] = 1; q[n_?EvenQ] := 2^((n - 4)/2) Binomial[n, n/2]/(n + 2); q[n_?OddQ] := 2^((n - 1)/2) Binomial[(n - 1), (n - 1)/2]/(n + 1); d[n_] := 4 - Mod[n, 2]; h0[n_] := 3*2^(n - 1) Binomial[2n, n]/((n + 1)(n + 2)); A090371[n_] := (h0[n] + DivisorSum[n, If[# > 1, EulerPhi[#]*Binomial[n/# + 2, 2] h0[n/#], 0] &])/n; a[n_] := 2 A069727[n] - A090371[n]; Array[a, 32] (* Jean-François Alcover, Aug 28 2019 *)
-
PARI
h0(n) = 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)); a090371(n) = (h0(n) + sumdiv(n, d, (d>1)*eulerphi(d)*binomial(n/d+2, 2)*h0(n/d)))/n; d(n) = if (n%2, 3, 4); q(n) = if (n%2, 2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1), 2^((n-4)/2)*binomial(n, n/2)/(n+2)); a069727(n) = if (n==0, 1, q(n) + (3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)) + sumdiv(n, k, (k!=n)*eulerphi(n/k)*d(n/k)*2^(k-2)*binomial(2*k, k)))/(2*n)); a(n) = 2*a069727(n) - a090371(n); \\ Michel Marcus, Dec 11 2014
Extensions
More terms from Michel Marcus, Dec 11 2014