A090396 Remainder when the sum of the first n primes is divided by n.
0, 1, 1, 1, 3, 5, 2, 5, 1, 9, 6, 5, 4, 1, 13, 13, 15, 15, 17, 19, 19, 21, 0, 3, 10, 17, 22, 27, 1, 3, 15, 27, 8, 19, 1, 15, 31, 11, 28, 7, 27, 3, 26, 3, 23, 41, 20, 5, 37, 17, 46, 25, 0, 33, 13, 49, 30, 7, 43, 19, 52, 29, 14, 61, 41, 19, 5, 59, 50, 37, 22, 7, 67, 55, 43, 29, 15, 3, 68, 57
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Karl-Heinz Hofmann, Listening to the terms of A090396, YouTube video.
- Karl-Heinz Hofmann, Plot of 3 selected ranges, n = 1..8200, 59000..113000, 105000..154000.
- Hugo Pfoertner, Visualization of a(n)/n, covering time range of audio track in video (160000 terms).
- Hugo Pfoertner, Filtered spectrum of a(n)/n waveform, shifted to audible frequency range.
Crossrefs
Programs
-
Maple
N:= 1000; # to get the first N terms pN:= ithprime(N): C:= map(round,Statistics:-CumulativeSum(select(isprime,[$1..pN]))); seq(C[n] mod n, n = 1 .. N); # Robert Israel, May 29 2014
-
Mathematica
t = Table[Mod[ Sum[Prime[i], {i, 1, n}], n], {n, 1, 100}] Module[{nn=80,pr},pr=Accumulate[Prime[Range[nn]]];Table[Mod[pr[[n]],n],{n,nn}]] (* Harvey P. Dale, Jul 03 2019 *)
-
PARI
a(n) = sum(k=1, n, prime(k)) % n; for(n=1, 80, print1(a(n),", ")); \\ Indranil Ghosh, Mar 06 2017
Formula
a(n) = A007504(n) mod n. - Karl-Heinz Hofmann, May 05 2021
Comments