cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090449 Fifth column (m=4) of triangle A090447.

Original entry on oeis.org

96, 2500, 27000, 180075, 878080, 3429216, 11340000, 32942250, 86248800, 207352860, 464199736, 978193125, 1956864000, 3741740800, 6876627840, 12202737156, 20988540000, 35103820500, 57249238200, 91254750895, 142462526976, 218212500000, 328451500000, 486489948750
Offset: 4

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Crossrefs

Cf. A090447.

Programs

  • Mathematica
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{96,2500,27000,180075,878080,3429216,11340000,32942250,86248800,207352860,464199736},40] (* Harvey P. Dale, Apr 10 2018 *)

Formula

a(n)= A090447(n, 4)= (n^4*(n-1)^3*(n-2)^2*(n-3)^1)/(1!*2!*3!*4!), n>=4.
G.f.: -x^4*(x^6+109*x^5+1435*x^4+4735*x^3+4780*x^2+1444*x+96)/(x-1)^11. - Colin Barker, Jan 21 2013
From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=4} 1/a(n) = 700*Pi^2/9 + 4*Pi^4/15 - 40*zeta(3) - 20129/27.
Sum_{n>=4} (-1)^n/a(n) = 30311/27 - 26*Pi^2/9 - 7*Pi^4/30 - 11008*log(2)/9 - 186*zeta(3). (End)