cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A120409 a(n) = n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6/(1!*2!*3!*4!*5!*6!).

Original entry on oeis.org

162000, 26471025, 1376829440, 36294822144, 600112800000, 7031325609000, 63117561830400, 457937132487120, 2790771598030416, 14702257341646875, 68449036271616000, 286552568263270400, 1093771338292039680, 3849852478998931776, 12612749124441600000
Offset: 1

Views

Author

Zerinvary Lajos, Jul 05 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq(n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6/(1!*2!*3!*4!*5!*6!),n=1..27)];
  • Mathematica
    Table[(Times@@Table[(n+k)^(k+1),{k,0,5}])/Times@@(Range[6]!),{n,15}] (* Harvey P. Dale, Jun 07 2022 *)
  • Sage
    [binomial(n,1)*binomial(n,3)*binomial(n,5)*binomial(n,2)*binomial(n,4)*binomial(n,6) for n in range(6, 19)] # Zerinvary Lajos, May 17 2009

Formula

Sum_{n>=1} 1/a(n) = 789878089*Pi^2/18000 + 64687*Pi^4/150 - 16*Pi^6/21 + 6603436*zeta(3)/25 + 80136*zeta(5) - 56698539425671/64800000. - Amiram Eldar, Sep 08 2022

Extensions

Offset changed from 0 to 1 by Georg Fischer, May 08 2021

A120408 a(n) = n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5/(1!*2!*3!*4!*5!).

Original entry on oeis.org

2500, 162000, 3781575, 49172480, 432081216, 2857680000, 15219319500, 68309049600, 266863130820, 929327871472, 2937513954375, 8547581952000, 23153892070400, 58918947333120, 141893427649968, 325406324160000, 714327643354500, 1507601438758800, 3070631112865855
Offset: 1

Views

Author

Zerinvary Lajos, Jul 05 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq(n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5/(1!*2!*3!*4!*5!),n=1..37)];
  • Mathematica
    Table[n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5/(1!*2!*3!*4!*5!),{n,19}] (* James C. McMahon, Oct 05 2024 *)

Extensions

Offset changed from 0 to 1 by Georg Fischer, May 08 2021
a(17)-a(19) from James C. McMahon, Oct 05 2024

A120410 a(n) = n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6*(n+6)^7/(1!*2!*3!*4!*5!*6!*7!).

Original entry on oeis.org

0, 26471025, 11014635520, 1306613597184, 72013536000000, 2320337450970000, 49989108969676800, 785820119347897920, 9577928124440387712, 94609025993497640625, 783056974947287040000, 5572874347584082739200, 34808179069805870776320, 193986366711798174329088
Offset: 0

Views

Author

Zerinvary Lajos, Jul 05 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq(n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6*(n+6)^7/(1!*2!*3!*4!*5!*6!*7!),n=1..17)];
  • Mathematica
    Table[n*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6*(n+6)^7/(1!*2!*3!*4!*5!*6!*7!), {n, 0, 10}] (* Amiram Eldar, Sep 08 2022 *)

Formula

Sum_{n>=1} 1/a(n) = 422971791896349857/972000000 - 845737633741*Pi^2/22500 - 230834541*Pi^4/500 - 58492*Pi^6/15 - 18320341039*zeta(3)/1800 - 15501934*zeta(5)/5 - 5040*zeta(7). - Amiram Eldar, Sep 08 2022

Extensions

a(0) prepended by Amiram Eldar, Sep 08 2022
Showing 1-3 of 3 results.