A090482 Smallest prime p such that tau(p-1) + tau(p+1) is n, or 0 if no such number exists.
0, 0, 2, 0, 3, 0, 5, 7, 0, 11, 17, 19, 37, 29, 0, 41, 101, 79, 0, 71, 197, 179, 401, 199, 2917, 181, 577, 239, 3137, 883, 4357, 419, 1297, 701, 12101, 839, 62501, 881, 30977, 1429, 21317, 2351, 16901, 1259, 287297, 1871, 1008017, 2161, 7057, 4049, 215297, 3079
Offset: 1
Keywords
Examples
a(10) = 11, tau(10) = 4 and tau(12) = 6, 4+6=10. a(16) = 41, a(17) = 101.
Programs
-
Mathematica
nn = 60; t = Table[-1, {nn}]; t[[{1,2,4,6,9,15,19}]] = 0; cnt = 7; p = 1; While[cnt < nn, p = NextPrime[p]; s = DivisorSigma[0, p-1] + DivisorSigma[0, p+1]; If[s <= nn && t[[s]] == -1, t[[s]] = p; cnt++]]; t (* T. D. Noe, Apr 28 2011 *)
Formula
Least prime p such that A175144(p) = n.
Extensions
More terms from David Wasserman, Nov 17 2005
Comments