A090483 Indices of zero in A090482.
1, 2, 4, 6, 9, 15, 19
Offset: 1
Keywords
Extensions
Two more terms from David Wasserman, Nov 17 2005
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
17 follows 11 and 13 is not a term as tau(10) + tau(12) = tau(12) + tau(14) = 10.
a = {}; t = 0; Do[p = Prime[n]; s = DivisorSigma[0, p - 1] + DivisorSigma[0, p + 1]; If[s > t, t = s; AppendTo[a, p]], {n, 1, 10^5}]; a (* Robert G. Wilson v, Dec 04 2003 *)
taudiff := proc(n) numtheory[tau](n-1)+numtheory[tau](n+1) ; end proc: A175144 := proc(n) taudiff(ithprime(n)) ; end proc: seq(A175144(n),n=1..80) ; # R. J. Mathar, Mar 03 2010
Table[p = Prime[n]; DivisorSigma[0, p - 1] + DivisorSigma[0, p + 1], {n, 100}] Total[DivisorSigma[0,{#-1,#+1}]]&/@Prime[Range[80]] (* Harvey P. Dale, Feb 25 2012 *)
a(n) = numdiv(prime(n)-1) + numdiv(prime(n)+1); \\ Amiram Eldar, Apr 17 2024
lista(pmax) = forprime(p = 1, pmax, print1(numdiv(p-1) + numdiv(p+1), ", ")); \\ Amiram Eldar, Apr 17 2024
nn = 25; t = Table[-1, {nn}]; t[[1]] = 0; t[[8]] = 0; cnt = 2; p = 1; While[cnt < nn, p = NextPrime[p]; s = DivisorSigma[0, p - 1] + DivisorSigma[0, p + 1]; If[PrimeQ[s], i = PrimePi[s]; If[i <= nn && t[[i]] == -1, t[[i]] = p; cnt++]]]; t (* T. D. Noe, Apr 28 2011 *)
Comments