A090495 Numbers k such that numerator(Bernoulli(2*k)/(2*k)) is different from numerator(Bernoulli(2*k)/(2*k*(2*k-1))).
574, 1185, 1240, 1269, 1376, 1906, 1910, 2572, 2689, 2980, 3238, 3384, 3801, 3904, 4121, 4570, 4691, 4789, 5236, 5862, 5902, 6227, 6332, 6402, 6438, 6568, 7234, 7900, 8113, 8434, 8543, 8557, 8566, 9232, 9611, 9670, 9824, 9891, 9898, 10564, 10587, 10754, 11230, 11247, 11535, 11691, 11896, 12562, 12965, 13019, 13228, 13246, 13355, 13484, 13894, 14560, 14714, 14957, 15176, 15226, 15346, 15892, 16558, 16668, 16944, 17035, 17224, 17387, 17890, 18379, 18406, 18534, 18556, 18761, 19222, 19598, 19888, 20090
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..200
- Cino Hilliard, Bernoulli ratios [posted on Yahoo group B2LCC, Feb 04 2004]
- Eric Weisstein's World of Mathematics, Stirling's Series
Programs
-
Maple
a := n->numer(bernoulli(2*n)/(2*n)): b := n->numer(bernoulli(2*n)/(2*n*(2*n-1))): for n from 1 to 2000 do if a(n)<>b(n) then print(n,a(n)/b(n)); fi; od:
-
Mathematica
a[n_] := Numerator[BernoulliB[2n]/(2n)] (* A001067 *); b[n_] := Numerator[BernoulliB[2n]/(2n(2n-1))] (* A046968 *); For[n=1, n <= 580, n++, If[ a[n] != b[n], Print[n, " ", a[n]/b[n]] ] ] k = 1; lst = {}; While[k < 38001, b = BernoulliB[2 k]; If [Numerator[b/(2 k)] != Numerator[b/(2 k (2 k - 1))], AppendTo[lst, k]; Print[{k}]]; k++ ]; lst (* Robert G. Wilson v, Aug 19 2010 *)
-
PARI
bern2(c,m1,m2) = { for(n=m1,m2, n2=n+n; a = numerator(bernfrac(n2)/(n2)); \ A001067 b = numerator(a/(n2-1)); if(a <> b,print("A("c") = "n","a/b);c++) ) } \\ Cino Hilliard
Extensions
a(1)-a(7) from Michael Somos and W. Edwin Clark, Feb 03 2004
a(8)-a(9) from Robert G. Wilson v, Feb 03 2004
a(10)-a(12) from Eric W. Weisstein, Feb 03 2004
a(13)-a(39) from Cino Hilliard, Feb 03 2004
a(40) from Eric W. Weisstein, Feb 04 2004
Many further terms from Cino Hilliard, Feb 15 2004
Comments