A090503 Number of hyperplanes in a finite projective space (of some dimension d over some finite field of order q).
7, 13, 15, 21, 31, 40, 57, 63, 73, 85, 91, 121, 127, 133, 156, 183, 255, 273, 307, 341, 364, 381, 400, 511, 553, 585, 651, 757, 781, 820, 871, 993, 1023, 1057, 1093, 1365, 1407, 1464, 1723, 1893, 2047, 2257, 2380, 2451, 2801, 2863, 3280, 3541, 3783, 3906, 4095, 4161, 4369, 4557, 4681, 5113, 5220, 5403, 5461, 6321, 6643, 6973
Offset: 1
Keywords
References
- T. Tsuzuki, Finite groups and finite geometries, Cambridge University Press, 1982, p. 73.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1504 (contains all terms below 10^8)
- P. Buser, J. H. Conway, P. Doyle and K.-D. Semmler, Isospectral domains
- W. Cherowitzo, Finite projective spaces
- Y. Okada and A. Shudo, Equivalence between isospectrality and isolength spectrality for a certain class of planar billiard domains, J. Phys. A: Math. Gen. 34 (2001), 5911-5922
Programs
-
Haskell
a090503 n = a090503_list !! (n-1) a090503_list = f [1..] where f (x:xs) = g $ tail a000961_list where g (q:pps) = h 0 $ map ((`div` (q - 1)) . subtract 1) $ iterate (* q) (q ^ 3) where h i (qy:ppys) | qy > x = if i == 0 then f xs else g pps | qy < x = h 1 ppys | otherwise = x : f xs -- Reinhard Zumkeller, Nov 26 2013
-
Mathematica
isA090503[n_] := Module[{f = FactorInteger[n-1]}, For[i = 1, i <= Length[f], i++, For[j = 1, j <= f[[i, 2]], j++, q = f[[i, 1]]^j; If[q == n-1, Continue[]]; If[n*(q-1)+1 == q^IntegerExponent[n*(q-1)+1, q], Return[True]]]]; False]; Reap[For[n = 2, n <= 10^5, n++, If[isA090503[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 21 2013, translated and adapted from Max Alekseyev's program *)
-
PARI
isA090503(n) = my(f,q); f=factor(n-1); for(i=1,matsize(f)[1], for(j=1,f[i,2], q=f[i,1]^j; if(q==n-1,next); if( n*(q-1)+1 == q^valuation(n*(q-1)+1,q), return(q)); )); 0 /* Max Alekseyev, Nov 20 2013 */
Formula
Numbers of the form (q^(d+1)-1)/(q-1), d>=2, q=p^m with m>=1 and p prime.
Extensions
Missing terms provided by Jean-François Alcover and Wouter Meeussen; edited by M. F. Hasler, Nov 20 2013
PARI program and further terms in a b-file added by Max Alekseyev, Nov 20 2013
Comments