cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090503 Number of hyperplanes in a finite projective space (of some dimension d over some finite field of order q).

Original entry on oeis.org

7, 13, 15, 21, 31, 40, 57, 63, 73, 85, 91, 121, 127, 133, 156, 183, 255, 273, 307, 341, 364, 381, 400, 511, 553, 585, 651, 757, 781, 820, 871, 993, 1023, 1057, 1093, 1365, 1407, 1464, 1723, 1893, 2047, 2257, 2380, 2451, 2801, 2863, 3280, 3541, 3783, 3906, 4095, 4161, 4369, 4557, 4681, 5113, 5220, 5403, 5461, 6321, 6643, 6973
Offset: 1

Views

Author

Olivier Giraud (olivier.giraud(AT)bristol.ac.uk), Feb 01 2004

Keywords

Comments

The number of tiles building the known pairs of Euclidean isospectral billiards are 7, 13, 15, 21, ... (see Refs Okada et al. and Buser et al.).
Subsequence of A053696. - Hans Havermann, Nov 21 2013

References

  • T. Tsuzuki, Finite groups and finite geometries, Cambridge University Press, 1982, p. 73.

Crossrefs

Programs

  • Haskell
    a090503 n = a090503_list !! (n-1)
    a090503_list = f [1..] where
       f (x:xs) = g $ tail a000961_list where
         g (q:pps) = h 0 $ map ((`div` (q - 1)) . subtract 1) $
                               iterate (* q) (q ^ 3) where
           h i (qy:ppys) | qy > x    = if i == 0 then f xs else g pps
                         | qy < x    = h 1 ppys
                         | otherwise = x : f xs
    -- Reinhard Zumkeller, Nov 26 2013
  • Mathematica
    isA090503[n_] := Module[{f = FactorInteger[n-1]}, For[i = 1, i <= Length[f], i++, For[j = 1, j <= f[[i, 2]], j++, q = f[[i, 1]]^j; If[q == n-1, Continue[]]; If[n*(q-1)+1 == q^IntegerExponent[n*(q-1)+1, q], Return[True]]]]; False]; Reap[For[n = 2, n <= 10^5, n++, If[isA090503[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 21 2013, translated and adapted from Max Alekseyev's program *)
  • PARI
    isA090503(n) = my(f,q); f=factor(n-1); for(i=1,matsize(f)[1], for(j=1,f[i,2], q=f[i,1]^j; if(q==n-1,next); if( n*(q-1)+1 == q^valuation(n*(q-1)+1,q), return(q)); )); 0 /* Max Alekseyev, Nov 20 2013 */
    

Formula

Numbers of the form (q^(d+1)-1)/(q-1), d>=2, q=p^m with m>=1 and p prime.

Extensions

Missing terms provided by Jean-François Alcover and Wouter Meeussen; edited by M. F. Hasler, Nov 20 2013
PARI program and further terms in a b-file added by Max Alekseyev, Nov 20 2013