cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090602 Number of n-element labeled groupoids with an identity.

Original entry on oeis.org

0, 1, 4, 243, 1048576, 762939453125, 170581728179578208256, 18562115921017574302453163671207, 1427247692705959881058285969449495136382746624, 106111661199647248543687855752712667991103904330482569981872649
Offset: 0

Views

Author

Christian G. Bower, Dec 05 2003

Keywords

Comments

Also labeled groupoids with an absorbant (zero) element.

Crossrefs

Cf. A090601 (isomorphism classes), A090603.

Programs

Formula

a(n) = n^((n-1)^2+1).
a(n) = A090603(n)*n.

Extensions

a(0)=0 prepended and a(9) added by Andrew Howroyd, Jan 23 2022

A090601 Number of n-element groupoids with an identity.

Original entry on oeis.org

1, 2, 45, 43968, 6358196250, 236919104155855296, 3682959509036574988532481464, 35398008251644050232134479709365068115968, 292415292106611727928759157427747328169866020125762652311
Offset: 1

Views

Author

Christian G. Bower, Dec 05 2003

Keywords

Comments

Also partial groupoids with n-1 elements or groupoids with an absorbant (zero) element with n elements.

Programs

Formula

a(n+1) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i, j>=1} ( (1 + sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j))
a(n) asymptotic to n^((n-1)^2+1)/n! = A090602(n)/A000142(n) = A090603(n)/A000142(n-1)
Showing 1-2 of 2 results.