A090657 Triangle read by rows: T(n,k) = number of functions from [1,2,...,n] to [1,2,...,n] such that the image contains exactly k elements (0<=k<=n).
1, 0, 1, 0, 2, 2, 0, 3, 18, 6, 0, 4, 84, 144, 24, 0, 5, 300, 1500, 1200, 120, 0, 6, 930, 10800, 23400, 10800, 720, 0, 7, 2646, 63210, 294000, 352800, 105840, 5040, 0, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 2, 2; 0, 3, 18, 6; 0, 4, 84, 144, 24; ...
Links
- Alois P. Heinz, Rows n = 0..62, flattened
- C. M. Ringel, The Catalan combinatorics of the hereditary artin algebras, arXiv preprint arXiv:1502.06553, 2015
Crossrefs
Programs
-
Maple
T:= proc(n,k) option remember; if k=n then n! elif k=0 or k>n then 0 else n * (T(n-1,k-1) + k/(n-k) * T(n-1,k)) fi end: seq(seq(T(n,k), k=0..n), n=0..10);
-
Mathematica
Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 0, n}], {n, 0,10}] // Flatten (* Geoffrey Critzer, Sep 09 2011 *)
Formula
T(n,k) = C(n,k) * k! * A048993(n,k).
T(n,k) = C(n,k) * A019538(n, k).
T(n,k) = C(n,k) * Sum_{j=0..k} (-1)^(k-j) * C(k,j) * j^n.
T(n,k) = n * (T(n-1,k-1) + k/(n-k) * T(n-1,k)) with T(n,n) = n! and T(n,0) = 0 for n>0.
T(2n,n) = A288312(n). - Alois P. Heinz, Jun 07 2017
Extensions
Revised description from Jan Maciak, Apr 25 2004
Edited by Alois P. Heinz, Jan 17 2011
Comments