A090693 Positive numbers n such that n^2 - 2n + 2 is a prime.
2, 3, 5, 7, 11, 15, 17, 21, 25, 27, 37, 41, 55, 57, 67, 75, 85, 91, 95, 111, 117, 121, 125, 127, 131, 135, 147, 151, 157, 161, 171, 177, 181, 185, 205, 207, 211, 225, 231, 237, 241, 251, 257, 261, 265, 271, 281, 285, 301, 307, 315, 327, 341, 351, 385, 387, 397
Offset: 1
References
- M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
- Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a={};Do[If[PrimeQ[n^2-2n+2],AppendTo[a,n]],{n,1000}];a (* Peter J. C. Moses, Apr 02 2013 *) Select[Range[400],PrimeQ[#^2-2#+2]&] (* Harvey P. Dale, May 10 2013 *)
-
Python
# Python 3.2 or higher required. from itertools import accumulate from sympy import isprime A090693_list = [i for i,n in enumerate(accumulate(range(10**5),lambda x,y:x+2*y-3)) if i > 0 and isprime(n+2)] # Chai Wah Wu, Sep 23 2014
Formula
a(n) = A005574(n)+1.
Extensions
Corrected and extended by Ray Chandler, Dec 28 2003
Definition corrected by Chai Wah Wu, Sep 23 2014