cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090740 Exponent of 2 in 3^n - 1.

Original entry on oeis.org

1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 8, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 5, 1
Offset: 1

Views

Author

Labos Elemer and Ralf Stephan, Jan 19 2004

Keywords

Comments

Also the 2-adic order of Fibonacci(3n) [Lengyel]. - R. J. Mathar, Nov 05 2008

Examples

			n=2: 3^2 - 1 = 8 = 2^3 so a(2)=3.
		

Crossrefs

Programs

  • Maple
    seq(padic:-ordp(3^n-1, 2), n=1..100); # Robert Israel, Dec 28 2015
  • Mathematica
    Table[Part[Flatten[FactorInteger[ -1+3^n]], 2], {n, 1, 70}]
    IntegerExponent[#,2]&/@(3^Range[110]-1) (* Harvey P. Dale, Jan 28 2017 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+1+(n/2)%2,1)) /* Ralf Stephan, Jan 23 2004 */
    
  • PARI
    a(n)=valuation(fibonacci(3*n),2); \\ Joerg Arndt, Oct 28 2012
    
  • PARI
    a(n)=my(t=valuation(n,2)); if(t,t+2,1) \\ Charles R Greathouse IV, Mar 14 2014
    
  • Python
    def A090740(n): return (n&-n).bit_length()+int(not n&1) # Chai Wah Wu, Jul 11 2022

Formula

a(n) = A007814(n) + A059841(n) + 1.
Multiplicative with a(p^e) = e+2 if p = 2; 1 if p > 2. G.f.: A(x) = 1/(1-x^2) + Sum_{k>=0} x^(2^k)/(1-x^(2^k)). - Vladeta Jovovic, Jan 19 2004
G.f.: Sum_{k>=0} t*(1+2*t+t^2+t^3)/(1-t^4) with t=x^2^k. Recurrence: a(2n) = a(n) + 1 + [n odd], a(2n+1) = 1. - Ralf Stephan, Jan 23 2004
a(n) = A337923(3*n). [Lengyel]. - R. J. Mathar, Nov 05 2008
G.f. A(x) satisfies A(x) = A(x^2) + x/(1-x) + x^2/(1-x^4). - Robert Israel, Dec 28 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2. - Amiram Eldar, Nov 28 2022
Dirichlet g.f.: zeta(s)*(2^s+1-1/2^s)/(2^s-1). - Amiram Eldar, Jan 04 2023