cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090780 a(n) = n*Product_{p prime, p|n} (p - 1)/2.

Original entry on oeis.org

1, 1, 3, 2, 10, 3, 21, 4, 9, 10, 55, 6, 78, 21, 30, 8, 136, 9, 171, 20, 63, 55, 253, 12, 50, 78, 27, 42, 406, 30, 465, 16, 165, 136, 210, 18, 666, 171, 234, 40, 820, 63, 903, 110, 90, 253, 1081, 24, 147, 50, 408, 156, 1378, 27, 550, 84, 513, 406, 1711, 60, 1830, 465, 189
Offset: 1

Views

Author

Benoit Cloitre, Feb 12 2004

Keywords

Comments

a(2n+1) is the conjectured value of the length of period of sequence of Genocchi number of first kind read modulo (2n + 1) (cf. A001469).

Crossrefs

Programs

  • Maple
    A023900 := proc(n) add( d*numtheory[mobius](d),d=numtheory[divisors](n)) ; end proc:
    A001221 := proc(n) nops(numtheory[factorset](n)) ; end proc:
    A076479 := proc(n) (-1)^A001221(n) ; end proc:
    A034444 := proc(n) 2^A001221(n) ;end proc:
    A090780 := proc(n) n/A076479(n)/A034444(n) *A023900(n); end proc:
    seq(A090780(n),n=1..20) ; # R. J. Mathar, Apr 14 2011
  • Mathematica
    a[n_] := Module[{f, p, e}, fun[p_, e_] := (p - 1)*p^e/2;
    If[n == 1, 1, Times @@ (fun @@@ FactorInteger[n])]]; Array[a, 50] (* Amiram Eldar, Nov 23 2018 *)
  • PARI
    a(n) = my(f=factor(n)[,1]); n*prod(k=1, #f, (f[k]-1)/2); \\ Michel Marcus, May 26 2019
    
  • PARI
    a(n) = eulerphi(n)*factorback(factorint(n)[, 1]/2) \\ Jianing Song, Aug 11 2023

Formula

a(n) = (n/(-2)^omega(n))*(Sum_{d|n} d*mu(d)) = n*A023900(n)/(A076479(n)*A034444(n)).
a(n) = n*A173557(n)/2. - R. J. Mathar, Apr 14 2011
From Jianing Song, Nov 22 2018: (Start)
Multiplicative with a(p^e) = (p - 1)*p^e/2 = A000217(p-1)*p^(e-1).
a(n) = A299822(n)/2^A001221(n).
a(prime(n)) = A034953(n).
a(n) is odd if and only if n = A004614(k) or 2*A004614(k). (End)
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 2/(p-1)^2) = 5.72671092223951683002237367406848393189560038246828458038126468772919585... - Vaclav Kotesovec, Sep 20 2020
From Jianing Song, Aug 11 2023: (Start)
a(n) = phi(n) * Product_{p|n, p prime} (p/2), where phi = A000010.
Equals A000010(n)*A007947(n)/2^A001221(n). (End)