A090780 a(n) = n*Product_{p prime, p|n} (p - 1)/2.
1, 1, 3, 2, 10, 3, 21, 4, 9, 10, 55, 6, 78, 21, 30, 8, 136, 9, 171, 20, 63, 55, 253, 12, 50, 78, 27, 42, 406, 30, 465, 16, 165, 136, 210, 18, 666, 171, 234, 40, 820, 63, 903, 110, 90, 253, 1081, 24, 147, 50, 408, 156, 1378, 27, 550, 84, 513, 406, 1711, 60, 1830, 465, 189
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A023900 := proc(n) add( d*numtheory[mobius](d),d=numtheory[divisors](n)) ; end proc: A001221 := proc(n) nops(numtheory[factorset](n)) ; end proc: A076479 := proc(n) (-1)^A001221(n) ; end proc: A034444 := proc(n) 2^A001221(n) ;end proc: A090780 := proc(n) n/A076479(n)/A034444(n) *A023900(n); end proc: seq(A090780(n),n=1..20) ; # R. J. Mathar, Apr 14 2011
-
Mathematica
a[n_] := Module[{f, p, e}, fun[p_, e_] := (p - 1)*p^e/2; If[n == 1, 1, Times @@ (fun @@@ FactorInteger[n])]]; Array[a, 50] (* Amiram Eldar, Nov 23 2018 *)
-
PARI
a(n) = my(f=factor(n)[,1]); n*prod(k=1, #f, (f[k]-1)/2); \\ Michel Marcus, May 26 2019
-
PARI
a(n) = eulerphi(n)*factorback(factorint(n)[, 1]/2) \\ Jianing Song, Aug 11 2023
Formula
a(n) = n*A173557(n)/2. - R. J. Mathar, Apr 14 2011
From Jianing Song, Nov 22 2018: (Start)
Multiplicative with a(p^e) = (p - 1)*p^e/2 = A000217(p-1)*p^(e-1).
a(prime(n)) = A034953(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 2/(p-1)^2) = 5.72671092223951683002237367406848393189560038246828458038126468772919585... - Vaclav Kotesovec, Sep 20 2020
From Jianing Song, Aug 11 2023: (Start)
a(n) = phi(n) * Product_{p|n, p prime} (p/2), where phi = A000010.
Comments