cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A090781 Numbers that can be expressed as the difference of the squares of primes in just one distinct way.

Original entry on oeis.org

5, 16, 21, 24, 40, 45, 48, 96, 112, 117, 144, 160, 165, 192, 264, 280, 285, 288, 336, 352, 357, 504, 520, 525, 648, 816, 832, 837, 936, 952, 957, 1152, 1344, 1360, 1365, 1368, 1440, 1656, 1672, 1677, 1752, 1824, 1840, 1845, 1872, 1968, 2184, 2200, 2205, 2328
Offset: 1

Views

Author

Ray Chandler, Feb 14 2004

Keywords

Examples

			5 = 3^2 - 2^2.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=100},Take[Sort[Transpose[Select[Tally[Last[#]-First[#]&/@ Subsets[ Prime[Range[nn]]^2,{2}]],Last[#]==1&]][[1]]],nn]] (* Harvey P. Dale, Apr 05 2014 *)
  • Python
    from sympy import primerange
    from collections import Counter
    def aupto(limit):
      sqps = [p*p for p in primerange(1, limit//2+1)]
      ways = Counter(b-a for i, a in enumerate(sqps) for b in sqps[i+1:])
      return sorted(k for k in ways if k <= limit and ways[k] == 1)
    print(aupto(2328)) # Michael S. Branicky, May 16 2021

A090782 Numbers that can be expressed as the difference of the squares of primes in just three distinct ways.

Original entry on oeis.org

120, 168, 312, 408, 480, 552, 600, 672, 720, 1008, 1200, 1800, 2160, 2472, 2832, 2880, 3312, 3672, 4560, 5040, 5640, 6120, 6480, 6528, 7248, 7320, 7752, 7872, 8160, 8352, 8400, 8712, 8880, 9048, 9768, 9960, 10032, 10200, 10320, 10488, 10608, 10848
Offset: 1

Views

Author

Ray Chandler, Feb 14 2004

Keywords

Examples

			120 = 13^2-7^2 = 17^2-13^2 = 31^2-29^2.
		

Crossrefs

A092000 Numbers that can be expressed as the difference of the squares of primes in exactly four distinct ways.

Original entry on oeis.org

240, 792, 912, 1248, 2040, 2280, 2760, 3528, 3720, 3960, 4080, 4440, 4680, 4872, 5160, 5520, 5880, 6600, 6720, 6960, 7080, 8520, 8568, 8760, 9072, 9120, 9672, 9912, 10248, 10440, 11088, 11592, 11832, 11880, 12408, 12480, 12720, 13200, 13560
Offset: 1

Views

Author

Ray Chandler, Feb 22 2004

Keywords

Examples

			240 = 17^2-7^2 = 19^2-11^2 = 23^2-17^2 = 61^2-59^2
		

Crossrefs

A092020 Numbers that can be expressed as the difference of the squares of primes in exactly twenty-four distinct ways.

Original entry on oeis.org

5383560, 5811960, 6126120, 8410920, 9110640, 10581480, 11124120, 11411400, 13573560, 14894880, 16936920, 18976440, 19503120, 19838280, 20060040, 23589720, 24929520, 28930440, 29004360, 29789760, 30084600, 31143840
Offset: 1

Views

Author

Ray Chandler, Feb 22 2004

Keywords

Crossrefs

Extensions

a(6)-a(22) from Donovan Johnson, Nov 26 2008

A092001 Numbers that can be expressed as the difference of the squares of primes in exactly five distinct ways.

Original entry on oeis.org

1560, 2640, 3120, 4200, 5928, 6072, 6840, 7560, 7800, 10080, 10560, 11400, 11760, 12240, 12600, 13440, 15288, 15600, 15840, 17808, 20592, 20832, 21120, 21528, 21912, 22848, 25680, 25872, 26208, 27840, 29232, 29400, 29640, 30192, 30240
Offset: 1

Views

Author

Ray Chandler, Feb 22 2004

Keywords

Examples

			1560 = 41^2-11^2 = 43^2-17^2 = 71^2-59^2 = 83^2-73^2 =
197^2-193^2
		

Crossrefs

A092019 Numbers that can be expressed as the difference of the squares of primes in exactly twenty-three distinct ways.

Original entry on oeis.org

5542680, 7283640, 7759752, 8168160, 8888880, 10297560, 11379480, 12852840, 14700840, 15236760, 16290120, 16888872, 18050760, 18276720, 18334680, 19477920, 20034840, 20420400, 21519960, 22085448, 22998360, 23848440
Offset: 1

Views

Author

Ray Chandler, Feb 22 2004

Keywords

Crossrefs

Extensions

a(6)-a(22) from Donovan Johnson, Nov 26 2008

A092002 Numbers that can be expressed as the difference of the squares of primes in exactly six distinct ways.

Original entry on oeis.org

840, 1320, 1680, 2520, 3192, 3432, 4920, 5208, 5280, 5712, 6552, 6888, 9360, 11928, 16008, 19152, 19992, 25200, 29568, 31080, 35880, 38280, 38640, 40920, 41832, 45240, 47880, 48360, 48720, 51240, 51480, 53040, 56280, 57288, 61320, 63240
Offset: 1

Views

Author

Ray Chandler, Feb 22 2004

Keywords

Examples

			840 = 31^2-11^2 = 37^2-23^2 = 41^2-29^2 = 47^2-37^2 = 73^2-67^2 =
107^2-103^2
		

Crossrefs

Programs

  • Mathematica
    Take[Transpose[Select[Tally[Sort[Last[#]-First[#]&/@(Subsets[ Prime[ Range[ 2000]],{2}]^2)]],Last[#]==6&]][[1]],40] (* Harvey P. Dale, Nov 17 2013 *)

A092003 Numbers that can be expressed as the difference of the squares of primes in exactly seven distinct ways.

Original entry on oeis.org

1848, 3360, 4368, 7392, 16632, 19320, 26520, 28560, 32760, 34320, 36960, 38760, 44520, 52080, 54600, 57720, 62040, 65208, 68880, 69960, 73920, 75768, 78120, 79560, 82992, 83160, 86520, 89760, 95760, 106080, 108240, 108528, 115368
Offset: 1

Views

Author

Ray Chandler, Feb 22 2004

Keywords

Examples

			1848 = 47^2-19^2 = 53^2-31^2 = 73^2-59^2 = 83^2-71^2 = 157^2-151^2 = 233^2-229^2 = 463^2-461^2.
		

Crossrefs

A092004 Numbers that can be expressed as the difference of the squares of primes in exactly eight distinct ways.

Original entry on oeis.org

7728, 17160, 25080, 26040, 30360, 35112, 42840, 50160, 53592, 56760, 63840, 65520, 67320, 68640, 79800, 90480, 93912, 95880, 98280, 105672, 106680, 112560, 120360, 135408, 135960, 139080, 139128, 140448, 148512, 150360, 154440, 158928
Offset: 1

Views

Author

Ray Chandler, Feb 22 2004

Keywords

Examples

			7728 = 97^2-41^2 = 107^2-61^2 = 113^2-71^2 = 173^2-149^2 =
283^2-269^2 = 487^2-479^2 = 647^2-641^2 = 1933^2-1931^2
		

Crossrefs

A092005 Numbers that can be expressed as the difference of the squares of primes in exactly nine distinct ways.

Original entry on oeis.org

9240, 15960, 22440, 27720, 39480, 50232, 62160, 72072, 80808, 84840, 85272, 92568, 99528, 108360, 111720, 112728, 124488, 127680, 138600, 141360, 151032, 155400, 160440, 174720, 182280, 186648, 192192, 210672, 224400, 237048, 245520
Offset: 1

Views

Author

Ray Chandler, Feb 22 2004

Keywords

Examples

			9240 = 97^2-13^2 = 101^2-31^2 = 103^2-37^2 = 107^2-47^2 =
127^2-83^2 = 131^2-89^2 = 179^2-151^2 = 467^2-457^2 = 2311^2-2309^2
		

Crossrefs

Showing 1-10 of 24 results. Next