A090820 Composite n such that Fibonacci(n) == Legendre(n,5) (mod n).
25, 60, 120, 125, 180, 240, 300, 360, 480, 540, 600, 625, 660, 720, 840, 900, 960, 1080, 1200, 1320, 1440, 1500, 1620, 1680, 1800, 1860, 1920, 1980, 2160, 2400, 2460, 2520, 2640, 2700, 2760, 2880, 3000, 3060, 3125, 3240, 3300, 3360, 3420, 3600, 3660, 3720
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Masataka Yorinaga, On a congruencial property of Fibonacci numbers (numerical experiments), Math. J. Okayama Univ. 19 (1976/77), no. 1, 5-10.
- Masataka Yorinaga, On a congruencial property of Fibonacci numbers (considerations and remarks), Math. J. Okayama Univ. 19 (1976/77), no. 1, 11-17.
Programs
-
Mathematica
Select[ Range[ 2, 5000 ], ! PrimeQ[ # ] && Mod[ Fibonacci[ # ] - JacobiSymbol[ #, 5 ], # ] == 0 & ]
-
PARI
N=10^4; for(n=2,N, if(Mod((fibonacci(n)), n)==kronecker(n,5) && !isprime(n), print1(n, ", ")));
Extensions
More terms from Felix Fröhlich, Apr 24 2014
Comments