cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049062 Composite n coprime to 5 such that Fibonacci(n) == Legendre(n,5) (mod n).

Original entry on oeis.org

4181, 5474, 5777, 6479, 6721, 10877, 12958, 13201, 15251, 17302, 27071, 34561, 40948, 41998, 44099, 47519, 51841, 54839, 64079, 64681, 65471, 67861, 68251, 72831, 75077, 78089, 88198, 90061, 95038, 96049, 97921
Offset: 1

Views

Author

Keywords

Comments

If n is a prime, not 5, then Fibonacci(n) == Legendre(n,5) (mod n) (see for example G. H. Hardy and E. M. Wright, Theory of Numbers).

Crossrefs

Cf. A090820.

Programs

  • Mathematica
    Select[ Range[ 2, 100000 ], ! PrimeQ[ # ] && Mod[ #, 5 ] != 0 && Mod[ Fibonacci[ # ] - JacobiSymbol[ #, 5 ], # ] == 0 & ]

Extensions

Yorinaga gives table up to 707000
More terms from Eric Rowland, Apr 29 2004
Definition corrected by Eric Rowland, Feb 24 2006

A094063 Composite n such that Fibonacci(n) == Legendre(n,5) == -1 (mod n).

Original entry on oeis.org

5777, 10877, 12958, 17302, 40948, 41998, 75077, 88198, 95038, 100127, 113573, 130942, 133742, 156178, 160378, 161027, 162133, 163438, 168838, 203942, 219742, 231703, 300847, 314158, 336598, 390598, 393118, 430127, 467038, 480478, 534508
Offset: 1

Views

Author

Eric Rowland, Apr 29 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2, 100000 ], ! PrimeQ[ # ] && Mod[ Fibonacci[ # ] - JacobiSymbol[ #, 5 ], # ] == 0 && JacobiSymbol[ #, 5 ] == -1 & ]

Extensions

More terms from Ryan Propper, Nov 07 2006

A093372 Composite k such that Fibonacci(k) == Legendre(k,5) == 1 (mod k).

Original entry on oeis.org

4181, 5474, 6479, 6721, 13201, 15251, 27071, 34561, 44099, 47519, 51841, 54839, 64079, 64681, 65471, 67861, 68251, 72831, 78089, 90061, 96049, 97921, 109871, 118441, 139359, 146611, 157079, 163081, 168299, 186961, 196559, 197209, 219781
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2, 100000 ], ! PrimeQ[ # ] && Mod[ Fibonacci[ # ] - JacobiSymbol[ #, 5 ], # ] == 0 && JacobiSymbol[ #, 5 ] == 1 & ]

Extensions

More terms from Eric Rowland, Apr 29 2004
More terms from Ryan Propper, Jul 21 2006

A241505 Composite integers k satisfying F_k-(k/5) == 0 (mod k), where F_k is the k-th Fibonacci number and (k/5) is the Kronecker symbol.

Original entry on oeis.org

25, 60, 120, 125, 180, 240, 300, 323, 360, 377, 480, 540, 600, 625, 660, 720, 840, 900, 960, 1080, 1200, 1320, 1440, 1500, 1620, 1680, 1800, 1860, 1891, 1920, 1980, 2160, 2400, 2460, 2520, 2640, 2700, 2760, 2880, 3000, 3060, 3125, 3240, 3300, 3360, 3420
Offset: 1

Views

Author

Felix Fröhlich, Apr 24 2014

Keywords

Comments

Sequence resembles A090820, although they are not identical.

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 5000], ! PrimeQ[#] && Mod[Fibonacci[# - JacobiSymbol[#, 5]], #] == 0 &] (* Jean-François Alcover, Apr 24 2014 *)
  • PARI
    forcomposite(n=2, 1e4, if(Mod(fibonacci(n-kronecker(n, 5)), n)==0, print1(n, ", ")))
Showing 1-4 of 4 results.