cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090820 Composite n such that Fibonacci(n) == Legendre(n,5) (mod n).

Original entry on oeis.org

25, 60, 120, 125, 180, 240, 300, 360, 480, 540, 600, 625, 660, 720, 840, 900, 960, 1080, 1200, 1320, 1440, 1500, 1620, 1680, 1800, 1860, 1920, 1980, 2160, 2400, 2460, 2520, 2640, 2700, 2760, 2880, 3000, 3060, 3125, 3240, 3300, 3360, 3420, 3600, 3660, 3720
Offset: 1

Views

Author

Eric Rowland, Apr 29 2004

Keywords

Comments

If n is a prime, not 5, then Fibonacci(n) == Legendre(n,5) (mod n) (see for example G. H. Hardy and E. M. Wright, Theory of Numbers).

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2, 5000 ], ! PrimeQ[ # ] && Mod[ Fibonacci[ # ] - JacobiSymbol[ #, 5 ], # ] == 0 & ]
  • PARI
    N=10^4; for(n=2,N, if(Mod((fibonacci(n)), n)==kronecker(n,5) && !isprime(n), print1(n, ", ")));

Extensions

More terms from Felix Fröhlich, Apr 24 2014

A094063 Composite n such that Fibonacci(n) == Legendre(n,5) == -1 (mod n).

Original entry on oeis.org

5777, 10877, 12958, 17302, 40948, 41998, 75077, 88198, 95038, 100127, 113573, 130942, 133742, 156178, 160378, 161027, 162133, 163438, 168838, 203942, 219742, 231703, 300847, 314158, 336598, 390598, 393118, 430127, 467038, 480478, 534508
Offset: 1

Views

Author

Eric Rowland, Apr 29 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2, 100000 ], ! PrimeQ[ # ] && Mod[ Fibonacci[ # ] - JacobiSymbol[ #, 5 ], # ] == 0 && JacobiSymbol[ #, 5 ] == -1 & ]

Extensions

More terms from Ryan Propper, Nov 07 2006

A319168 Frobenius pseudoprimes == 1,4 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.

Original entry on oeis.org

4181, 6721, 13201, 15251, 34561, 51841, 64079, 64681, 67861, 68251, 90061, 96049, 97921, 118441, 146611, 163081, 186961, 197209, 219781, 252601, 254321, 257761, 268801, 272611, 283361, 302101, 303101, 330929, 399001, 433621, 438751, 489601, 512461, 520801
Offset: 1

Views

Author

Jianing Song, Sep 12 2018

Keywords

Comments

Complement of A212423 with respect to A212424.
Intersection of A212424 and A047209.
Composite k == 1,4 (mod 5) such that Fibonacci(k) == 1 (mod k) and that k divides Fibonacci(k-1).

Examples

			4181 = 37*113 is composite, while Fibonacci(4180) == 0 (mod 4181), Fibonacci(4181) == 1 (mod 4181), so 4181 is a term.
		

Crossrefs

Programs

  • PARI
    for(n=2,500000,if(!isprime(n) && (n%5==1||n%5==4) && fibonacci(n-kronecker(5,n))%n==0 && (fibonacci(n)-kronecker(5,n))%n==0, print1(n, ", ")))
Showing 1-3 of 3 results.